期刊文献+

Low cycle fatigue behavior of die cast Mg-Al-Mn-Ce magnesium alloy 被引量:1

Low cycle fatigue behavior of die cast Mg-Al-Mn-Ce magnesium alloy
下载PDF
导出
摘要 Fatigue failure is a main failure mode for magnesium and other alloys. It is beneficial for fatigue design and fatigue life improvement to investigate the low cycle fatigue behavior of magnesium alloys. In order to investigate the low cycle fatigue behavior of die cast Mg-AI-Mn-Ce magnesium alloy, the strain controlled fatigue experiments were performed at room temperature and fatigue fracture surfaces of specimens were observed with scanning election microscopy for the alloys under die-cast and aged states. Cyclic stress response curves, strain amplitude versus reversals to failure curve, total strain amplitude versus fatigue life curves and cyclic stress-strain curves of Mg-AI-Mn-Ce alloys were analyzed. The results show that the Mg-AI-Mn-Ce alloys under die-cast (F) and aged (T5) states exhibit cyclic strain hardening under the applied total strain amplitudes, and aging treatment could greatly increase the cyclic stress amplitudes of die cast Mg-AI-Mn-Ce alloys. The relationships between the plastic strain amplitude, the elastic strain amplitude and reversals to failure of Mg-AI-Mn-Ce magnesium alloy under different treatment states could be described by Coffin-Manson and Basquin equations, respectively. Observations on the fatigue fracture surface of specimens reveal that the fatigue cracks initiate on the surface of specimens and propagate transgranularly. Fatigue failure is a main failure mode for magnesium and other alloys. It is beneficial for fatigue design and fatigue life improvement to investigate the low cycle fatigue behavior of magnesium alloys. In order to investigate the low cycle fatigue behavior of die cast Mg-Al-Mn-Ce magnesium alloy, the strain controlled fatigue experiments were performed at room temperature and fatigue fracture surfaces of specimens were observed with scanning election microscopy for the alloys under die-cast and aged states. Cyclic stress response curves, strain amplitude versus reversals to failure curve, total strain amplitude versus fatigue life curves and cyclic stress-strain curves of Mg-Al-Mn-Ce alloys were analyzed. The results show that the Mg-Al-Mn-Ce alloys under die-cast(F) and aged(T5) states exhibit cyclic strain hardening under the applied total strain amplitudes, and aging treatment could greatly increase the cyclic stress amplitudes of die cast Mg-Al-Mn-Ce alloys. The relationships between the plastic strain amplitude, the elastic strain amplitude and reversals to failure of Mg-Al-Mn-Ce magnesium alloy under different treatment states could be described by Coffin-Manson and Basquin equations, respectively. Observations on the fatigue fracture surface of specimens reveal that the fatigue cracks initiate on the surface of specimens and propagate transgranularly.
出处 《China Foundry》 SCIE CAS 2013年第6期380-384,共5页 中国铸造(英文版)
基金 financially supported by the Science and Technology Research Project of Liaoning Province Education Department(L2012038)
关键词 magnesium alloy low cycle fatigue cyclic stress response fatigue life die cast magnesium alloy low cycle fatigue cyclic stress response fatigue life die cast
  • 相关文献

参考文献6

二级参考文献63

共引文献133

同被引文献4

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部