摘要
本文根据热力学第一定律和随机函数建立了一个随机非线性气候模式,并对该模式导出了相应的Fokker—Planck方程且进行了求解。结果表明,模式的温度概率密度是一条有双峰值的曲线,所得两个稳态解与现在气候和冰期气候相对应。
Using the first thermodvnamic law and Stochastic function, a stochastic nonlinear olimate model is proposed, and Fokker-planck equation which corresponds to the model is derived and solved. The result inbicates that temperature probability density of the model is a curve with two peaks. Both solutions is conesponded to the present climate and the glocial climate.
出处
《赣南师范学院学报》
1991年第3期33-37,共5页
Journal of Gannan Teachers' College(Social Science(2))