期刊文献+

一类变分不等式组迭代解的收敛性

Convergence Analysis for Iterative Solutions of General System of Variational Inequalities
下载PDF
导出
摘要 本文研究了一类变分不等式组逼近解的收敛性问题.利用预解算子的技术注明,在一定的松弛强度,连续条件下,逼近解是收敛的.该结果大大减弱了文献(Applied Mathematics and Computation 214(2009)26-30)中的条件,而且明显地改进了该文中的迭代计算方法. In this paper, the convergence result for the approximation solutions of a general system of variational inequalities is obtained via resolvent operator method Under some. proper rekaxed coercive condition, and continuity condition. It weakens the assumptions in Applied Mathematics and Computation 214 (2009)26-30, and improves the iterative computer method.
作者 严慧文
出处 《汕头大学学报(自然科学版)》 2013年第4期15-18,共4页 Journal of Shantou University:Natural Science Edition
基金 国家自然科学基金资助项目(11271143 11371155) 高校博士点基金资助项目(20124407110001)
关键词 预解算子 变分不等式组 预解方法的收敛性 resolvent operator system of variational inequalities convergence of projection method
  • 相关文献

参考文献6

  • 1Brezis H. Operateurs maximaux monotone et semigroupes de contractions dans les espaces de hilbert [M]. Amsterdam: North-Holland, 1973.
  • 2Bnouhachem A, Noor M A, Rassias T A. Three-steps iterative algorithms for mixed variational inequalities[J]. Applied Mathematics and Computation, 2006, 183(1): 436-447.
  • 3Chang S S, Joseph Lee tt W, Chan C K. Generalized system for relaxed cocoercive variational inequalities in hilbert spaces[J]. Applied Mathematics Letter, 2007, 20(3): 329-334.
  • 4He Z H, Feng G. Generalized system for relaxed eocoercive mixed variational inequalities in hilbert spaces[J]. Applied Mathematics and Computation, 2009, 214(1): 26-30.
  • 5Noor M A. An implicit method for mixed variational inequalities[J]. Applied Mathematics Letter, 1998, 11(4): 109-113.
  • 6Verma R U. General convergence analysis for two-step projection methods and applications to variational problems[J]. Applied Mathematics Letters, 2005, ! 8( 11 ) : 1286-1292.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部