期刊文献+

传统遗传算法和改进的NSGA-Ⅱ算法在多目标优化问题的应用 被引量:6

The Traditional Genetic Algorithm and Improved NSGA-Ⅱ Algorithm in the Application of Multi-objective Optimization Problem
下载PDF
导出
摘要 在电力产业蓬勃发展的今天,随着一系列电力改革措施的实行,火电企业需要多角度深层次的考虑降低电厂运行成本。在火力发电过程中产生很多污染,如二氧化硫,氮氧化物,二氧化碳等。采用多目标优化的方法对火电厂负荷分配问题进行研究具有重要意义。以考虑经济和环境的双目标优化为例子,运用传统的简单遗传算法和改进的遗传算法-NSGA-Ⅱ,以三机组为例,进行优化计算,并且进行研究。 With the electric power industry vigorous development nowadays, along with a series of electric power reform measures implemented, thermal power enterprise need multi- angle deep consider reducing power plant operation cost. In the process of thermal power produced a lot of pollution, such as sulfur dioxide and nitrogen oxides, carbon dioxide and so on. Using the method of multi-objective optimization problems of power load distribution has a great significance for the study. This paper consider economic and environmental double objective optimization for example, the use of traditional simple genetic algorithm and improved genetic algorithm - NSGA - Ⅱ , with three unitfor example, were optimized, and do a comparative study.
出处 《锅炉技术》 北大核心 2013年第6期5-8,共4页 Boiler Technology
基金 内蒙古工业大学基金项目(ZD201216) 内蒙古自治区自然科学基金(2010BS0605)
关键词 多目标优化 遗传算法 NSGA-Ⅱ算法 gamultiobj函数 PARETO最优解 Gamuhiobjmulti-objective optimization Genetic algorithm NSGA - Ⅱ algorithms function Pareto optimal solution
  • 相关文献

参考文献9

  • 1Abido M A. A novel multiobjetive evolutionary algorithm for environmental economic power dispatch[J].Electric Power Systems Research,2003,(01):71-81.doi:10.1016/S0378-7796(02)00221-3.
  • 2王晛,李渝曾,张少华.一种求解环境经济负荷调度问题的人工神经网络新方法[J].电力系统自动化,2002,26(21):45-48. 被引量:15
  • 3Adi Saadat;王葵.电力系统分析[M]北京:中国电力出版社,2008.
  • 4唐巍,李殿璞.电力系统经济负荷分配的混沌优化方法[J].中国电机工程学报,2000,20(10):36-40. 被引量:134
  • 5Lingfeng Wang,Chanan Singh. Environmental/economic power dispatch using a fuzzified multi-objective particle swarm optimization algorithm[J].Electric Power Systems Research,2007,(12):1654-1664.doi:10.1016/j.epsr.2006.11.012.
  • 6王治国,刘吉臻,谭文,杨光军.基于快速性与经济性多目标优化的火电厂厂级负荷分配研究[J].中国电机工程学报,2006,26(19):86-92. 被引量:67
  • 7Robert T F,Ah KingV,Harry C SV. Evolutionary multi-objective environmental economic dispatch:stochastic versus deterministic approaches[J].Indian academic science,2003,(02):108-1114.
  • 8Michalewicz Z. Genetic Algorithm-+-Data St ruture =Evolutionary Programs[M].Berlin Heidelberg,New York:Springer-Verlag,1996.
  • 9Melanie Mitchel. An Introduction to Genetic Algorithm[M].A Bradford Book The MIT Press,USA,1998.

二级参考文献32

共引文献205

同被引文献40

  • 1王霞,唐德善,赵洪武,李晓明.太子河流域水资源优化配置供水模型[J].水利水运工程学报,2005(2):46-52. 被引量:3
  • 2姚玉英.化工原理[M].天津:天津科学技术出版社,2005:94-104.
  • 3Martin J D.Computational improvements to estimating kriging metamodel parameters[J].Journal of Mechanical Design,2009,131(8):084501.
  • 4Matta A,Pezzoni M,Semeraro Q.A Kriging-based algorithm to optimize production systems approximated by analytical models[J].J Intell Manuf,2012,23(3):587-597.
  • 5Zakerifar M,Biles W E,Evans G W.Kriging metamodeling in multiple-objective simulation optimization[J].International,Simulation Transactions of the Society for Modeling and Simulation,2011,87(2):843-856.
  • 6Shan S,Wang G G.An efficient Pareto set identification approach for multiobjective optimization on black-box functions[J].Journal of Mechanical Design,2005,127(5):866-874.
  • 7Deb K,Pratap A,Agarwal S,et al.A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
  • 8Derakhshan S,Mohammadi B,Nourbakhsh A.The comparison of incomplete sensitivities and genetic algorithms applications in 3D radial turbomachinery blade optimization[J].Computers&Fluids,2010,39(10):2022-2029.
  • 9Khalkhali A,Darvizeh A,Nariman-zadeh N,et al.Reliability based robust multi-objective crashworthiness of S-shaped box beams with parametric uncertainty[J].International Journal of Crashworthiness,2010,15(4):443-456.
  • 10卫田,范文慧.基于NSGA Ⅱ的物流配送中车辆路径问题研究[J].计算机集成制造系统,2008,14(4):778-784. 被引量:30

引证文献6

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部