期刊文献+

一种基于支持向量机的垃圾微博识别方法 被引量:2

A Method of Identifying Microblog Spammers Based on Support Vector Machine
下载PDF
导出
摘要 针对中文微博垃圾特点,提取基于向量空间模型的中文文本相似度、长短链接相似度、发文时间规律等新的分类特征,加入现有的特征集,运用支持向量机方法,训练后得到分类模型。实验结果表明,该方法是一种有效的垃圾微博识别技术。 To fill Chinese microblog spammer' identifying gap,some new VSM-based features such as Chinese text similarity,long and short URLs similarity,and posting regulations etc.are abstracted and put together with currently feature set,then support vector machine is employed for training and classification model is obtained.The experiment results show that the proposed method is of great effect for spammers' identification.
出处 《安徽工业大学学报(自然科学版)》 CAS 2013年第4期440-445,共6页 Journal of Anhui University of Technology(Natural Science)
基金 国家自然科学基金项目(61003311) 江苏省网络与信息安全重点实验室开放课题基金项目(BM2003201-201006)
关键词 博文特征 用户特征 支持向量机 垃圾微博识别 status feature user profile feature support vector machine microblog spammers' identification
  • 相关文献

参考文献8

  • 1Ghosh S, Korlam G, Ganguly N.Spammers' networks within online social networks: a case-study on twitter[C]//Proceedings of the 20th International World Wide Web Conference. 2011:41-42.
  • 2McCord M, Chuah M. Spare detection on twitter using traditional classifiers[C]//Proceedings of the 8th international conference on Autonomic and trusted computing. 2011:175-186.
  • 3Wang A H. Don' t follow me: spam detection in twitter[C]//Proceedings of the International Conference on Security and Cryptography, 2010:1-10.
  • 4Wang A H. Detecting spare bots in online social networking websites: a machine learning approach[C]//Proceedings of the 24th Annual IFIP WG 11.3 Working Conference on Data and Applications Security. 2010:335-342.
  • 5Duan Y J, Jiang L, Qin T, et al. An empirical study on learning to rank of tweets [C]//Proceedings of the 23rd International Conference on Computational Linguistics. 2010: 295-303.
  • 6Grier C, Thomas K, Paxso'ny V, et al .@,spare: the underground on 140 characters or less [C]//Proceedings of the 17th ACM Conference on Computer and Communications Security. 2010:27-37.
  • 7李芳.支持向量机在TE过程故障诊断中的应用[J].安徽工业大学学报(自然科学版),2010,27(2):195-199. 被引量:5
  • 8Java A, Song X D, Finin T, et al .Why we twitter: understanding microblogging usage and communities [C]//Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshoo on Web mininz and social network analysis. 2007:56-~65.

二级参考文献7

  • 1Cristianini N,Taylor J S.Anintroduction to Support Vector Machines:and other Kernel-Based Learning Methods[M].Cambridge University Press,New York,2000.
  • 2Chih-Wei Hsu,Chih-Jen Lin.A comparison of methods for multi-class Support Vector Machines[J].IEEE Transaction on Neural Netwocks,2002,13(2):415-425.
  • 3Weston J.Extensions to the support vector methed[D].London:Royal Holloway University of London,1999.
  • 4Platt J C,Cristianini N.Large margin DAGs for multi-class classification[J].Advances in Neural Information Processing Systems,2000,12:547-553.
  • 5Downs J J.Vogel E F.A plant-wide industrial process control problem[J].Computers and chemical engineering,1993,17(3):245-255.
  • 6McAvoy T J.Ye N.Base control for the Tennessee Eastman problem[J].Computers and chemical engineering,1994,18:383-413.
  • 7康卓,黄竞伟,李艳,康立山.复杂系统数据挖掘的多尺度混合算法[J].软件学报,2003,14(7):1229-1237. 被引量:18

共引文献4

同被引文献30

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部