期刊文献+

双向变厚度矩形薄板的自由振动分析 被引量:1

Free vibration analysis of rectangular plates with varying thickness in two directions
下载PDF
导出
摘要 针对传统级数法只能求解特定边界条件下矩形板的振动问题,通过采用改进Fourier级数的方法,将双向变厚度薄板的振动位移函数表示为标准的二维Fourier余弦级数和辅助Fourier级数的线性组合,从而使级数法能适用于任意的弹性边界条件.利用Rayleigh-Ritz法建立了与变厚度薄板控制方程等价的矩阵表达示,通过特征值分解求得板的固有频率和振型.数值算例表明了该方法具有很高的求解精度和很好的收敛性. To use the traditional series method, only vibrations of rectangular plates with specific boundary condi- tions can be analyzed, but an improved Fourier series method has been employed so that the vibration displace- ments of rectangular plates with varying thickness in two directions could be expressed as the linear combination of a standard two-dimensional Fourier cosine series and auxiliary series functions, and this method can be universally applied to general elastic boundary conditions. The Rayleigh-Ritz method can give the matrix's eigenvalue equation which is equivalent to governing differential equations of the tapered plate, and all the eigenvalues and eigenvectors can be obtained by solving the matrix equation. The accuracy and good convergence characteristics of this method are demonstrated through numerical examples.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2013年第11期1456-1459,共4页 Journal of Harbin Engineering University
基金 国家自然科学基金资助项目(51105087) 中央高校基本科研业务费专项资金资助项目(HEUCF110701)
关键词 变厚度板 改进的Fourier级数 Rayleigh—Ritz法 自由振动 plates with varying thickness improved Fourier series Rayleigh-Ritz method free vibration
  • 相关文献

参考文献11

  • 1GRIGORENKO Y M,GRIGEORENKO A Y,EFIMOVA T L. Spline-based investigation of natural vibrations of orthotropic rectangular plates of variable thickness within classical and re-fined theories[J].Journal of Mechanics of Materials and Structures,2008,(05):929-952.
  • 2苏淑兰,饶秋华,王银邦.单向变厚度Levy型薄板的自由振动分析[J].中南大学学报(自然科学版),2011,42(5):1413-1418. 被引量:6
  • 3SAKIYAMA T,HUANG M. Free vibration analysis of rectan-gular plates with variable thickness[J].Journal of Sound and Vibration,1998,(03):379-397.
  • 4BERT C W,MALIK M. Vibration analysis of tapered rectan-gular plates by differential quadature method:a semi-analyti-cal approach[J].Journal of Sound and Vibration,1996,(01):41-63.doi:10.1006/jsvi.1996.0046.
  • 5HASHEMI S H,TAHER H R,AKHAVAN H. Vibration anal-ysis of radially FGM sectorial plates of variable thickness on e-lastic foundations[J].Computers & Structures,2010,(07):1734-1743.
  • 6SEYIT C,ALTAY G. Free vibration of super elliptical plates with constant and variable thickness by Ritz method[J].Jour-nal of Sound and Vibration,2009,(1/2):668-680.doi:10.1016/j.jsv.2008.06.010.
  • 7BAMBILL D V,ROSSIT C A,LAURA P A. Transverse vibrations of an orthotropic rectangular plate of linearly varying thickness and with a free edge[J].Journal of Sound and Vi-bration,2000,(03):530-538.doi:10.1006/jsvi.2000.2904.
  • 8LI W L. Free vibrations of beams with general boundary condi-tions[J].Journal of Sound and Vibration,2000,(04):709-725.doi:10.1006/jsvi.2000.3150.
  • 9LI W L. Vibration analysis of rectangular plates with general e-lastic boundary supports[J].Journal of Sound and Vibration,2004,(03):619-635.doi:10.1016/S0022-460X(03)00562-5.
  • 10LI W L,ZHANG X Y,DU J T. An exact series solu-tion for the transverse vibration of rectangular plates with gen-eral elastic boundary supports[J].Journal of Sound and Vi-bration,2009,(1/2):254-269.

二级参考文献15

  • 1李景高,牛忠荣.变厚度矩形薄板的屈曲和自由振动问题[J].安徽建筑工业学院学报(自然科学版),1995,3(1):1-5. 被引量:1
  • 2Appl F C,Byers N E Fundamental frequency of simply supported rectangular plates with varying thickness[J].Journal of Applied Mechanics,1965,32:163-168.
  • 3Ashton J E.Free vibration of linearly tapered clamped plates[J].J Eng Mech Div,ASCE,1969,95:497-500.
  • 4Dawe D J.Vibration of rectangular plate of variable thickness[J].Journal of Mechanical Engineering Science,1966,8:42-51.
  • 5Mukherjee A,Mukhopadhyay M.Finite clement for flexural vibration analysis of plates having various shapes and varying rigidities[J].Comput Struet,1986,23(6):807-812.
  • 6Mukhopadayay M.A semi-analytical solution for free vibration of rectangular plates[J].Journal of Sound and Vibration,1978,60(1):71-85.
  • 7Aksu G,Al-Kaabi S A.Free vibration analysis of Mindlin plates with linearly varying thickness[J].Journal of Sound and Vibration,1987,119(2):189-205.
  • 8Bhat R B,Laura P A A,Gutierrez R G,et al.Numerical experiments on the determination of natural frequencies of transverse vibrations of rectangular plates of non-uniform thickness[J].Journal of Sound and Vibration,1990,138(2):205-219.
  • 9Cheung Y K,Zhou D.The free vibration of tapered rectangular plates using a new set of beam with the Rayleigh-Ritz method[J].Journal of Sound and Vibration,1999,223(5):703-722.
  • 10Bambill D V,Rossit C A,Laura P A A,et al.Transverse vibrations of an orthotropic rectangular plate of linearly varying thickness and with a free edge[J].Journal of Sound and Vibration,2000,235(3):530-538.

共引文献5

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部