期刊文献+

基于双遍历和膨胀滤波的图像拼接定位算法

A Image Stitching Positioning Algorithm Based on Double Traversal and Expansion Filter
下载PDF
导出
摘要 针对图像拼接操作会对边缘像素的连续性造成破坏等问题,本文提出了一种基于双遍历峰值和膨胀滤波的彩色图像拼接定位算法。该算法首先对待检测图像进行行列差分,确定双遍历峰值,同时再进行R,G,B三通道拼接点融合,从而全面获取拼接点信息,并利用数学形态学的膨胀滤波,强化拼接边缘,削弱噪点的影响。仿真结果表明,彩色图像拼接定位算法,时空复杂度小,能够有效地检测图像拼接伪造区域、大小及形状,可以对伪造区域进行准确定位。该研究可应用于图像取证等相关行业。 This paper puts forward a double traverse peak color image stitching positioning algorithm and filtering,for image stitching operation will damage to the continuity of edge pixels. The algorithm firstly treats differential detection image procession and determine double traverse spikes then it treats R, G, B three channel fusion splicing point, comprehensive information for splicing point; Finally, the expansion of the use of mathematical morphology filtering reinforces stitching edge, and weakens the noise effect. The simulation results show that the time and space complexity is small, algorithm can effectively detect the image splicing forgery area, size, and shape, and it can accurate positioning for fake areas. Itcan be used in image forensics.
出处 《青岛大学学报(工程技术版)》 CAS 2013年第4期17-22,共6页 Journal of Qingdao University(Engineering & Technology Edition)
关键词 数字图像取证 图像拼接 边缘效应 digital image forensics image stitching edge effect
  • 相关文献

参考文献11

  • 1Gunturk B K,Altunbasak Y,Mersereau R M.Color Plane Interpolation Using Alternating Projections[J].Image Processing,IEEE Transactions on,2002,11(9):997-1013.
  • 2Swaminathan A,Wu Min,Liu K J R.Nonintrusive Component Forensics of Visual Sensors Using Output Images[J].Information Forensics and Security,IEEE Transactions on,2007,2 (1):91-106.
  • 3Lukás J,Fridrich J,Goljan M.Detecting Digital Image Forgeries Using Sensor Pattern Noise[C] //Electronic Imaging 2006,International Society for Optical and Photonics.Washington USA:SPIE,2006.
  • 4Khan E S,Kulkarni E A.An Efficient Method for Detection of Copy-Move Forgery Using Discrete Wavelet Transform[J].International Journal on Computer Science and Engineering,2010,2(5):1801-1806.
  • 5Shivakumar B L,Santhosh B S.Detecting Copy-Move Forgery in Digital Images:A Survey and Analysis of Current Methods[J].Global Journal of Computer Science and Technology,2011,10(7):61-65.
  • 6周琳娜,王东明,郭云彪,杨义先.基于数字图像边缘特性的形态学滤波取证技术[J].电子学报,2008,36(6):1047-1051. 被引量:45
  • 7王波,孔祥维,尤新刚,付海燕.基于协方差矩阵的CFA插值盲检测方法[J].电子与信息学报,2009,31(5):1175-1179. 被引量:8
  • 8Ng Tian-Song,Chang Shih-Fu,Sun Qibin.Blind Detection of Photomontage Using Higher Order Statistics[C] //IEEE International Symposium on Circuits and System.Vancouver,BC,Canada:IEEE,2004(5):688-691.
  • 9Ng Tian-Song,Chang Shih-Fu.A Model for Image Splicing[C] //Image Processing,2004 International Conference on.Singapore:IEEE,2004:1169-1172.
  • 10张雯,李学明.改进的基于颜色滤波阵列特性的篡改检测[J].计算机工程与应用,2009,45(6):176-179. 被引量:3

二级参考文献31

  • 1Popescu A C,Farid H.Exposing digital forgeries in color filter array interpolated images[J].IEEE Transactions on Signal Processing, 2005,53 ( 10) : 3948-3959.
  • 2Popescu A C.Statistical tools for digital image forensics[D].Hanover: Dartmouth College, 2004.
  • 3Chen Ting.A study of spatial color interpolation algorithms for single-detector digital cameras[EB/OL].(1999).http://scien.stanford. edu/class/psych221/projects/99/tingchen/.
  • 4Dempster A P,Larid N M,Rubin D B.Maximum likelihood from incomplete data via the EM algorithm[J]Journal of the Royal Statistical Society, 1977,39( 1 ) : 1-38.
  • 5Hsu Y F,Chang S F.Detecting image splicing using geometry invariants and camera characteristics consistency[C]//Interational Conference on Multimedia and Expo (ICME),Toronto,Canada,July 2006.
  • 6Adams J, Parulski K, and Spaulding K. Color processing in digital cameras. IEEE Micro, 1998, 18(6): 20-30.
  • 7Popescu A C and Farid H. Exposing digital forgeries in color filter array interpolated images. IEEE Trans. on Signal Processing, 2005, 53(10): 3948-3959.
  • 8Bayram S, Sencar H, and Memon H, et al.. Source camera identification based on CFA interpolation. IEEE International Conference on Image Processing, Genova, Italy, Sep. 11-14, 2005, Vol. 3: III-69-72.
  • 9Bayram S, Sencar H, and Memon N. Improvements on source camera-model identification. IFIP Working Group 11.9 on Digital Forensics, Orlando, Florida, USA, Jan.29-Feb.1, 2006.
  • 10Gallagher A C. Detection of linear and cubic interpolation in JPEG compressed images. The 2nd Canadian Conference on Computer and Robot Vision 2005, Victoria, BC, Canada, May, 9-11, 2005: 65-72.

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部