期刊文献+

煤岩声发射信号识别研究 被引量:4

Research of identification of acoustic emission signal of coal and rock
下载PDF
导出
摘要 针对煤岩破裂的声发射信号难以在复杂的噪声环境中识别的问题,提出了一种基于小波包分析和小波特征能谱系数分析的煤岩声发射信号识别方法。选取Symlets小波作为煤岩声发射信号分析的小波基函数,采用混合阈值算法对该信号进行去噪处理,提取出有用声发射信号,并采用Matlab软件分别对有用声发射信号和噪声信号的小波包分解进行仿真,得到两者的小波特征能谱系数和小波包特征向量。仿真结果表明,有用声发射信号特征向量的各级能量变化程度较大,噪声信号特征向量的能量变化较为稳定,从而可实现煤岩声发射信号的识别。 In view of problem that it is difficult to identify acoustic emission signal of coal and rock burst under complicated noise environment, the paper proposed an identification method of acoustic emission signal of coal and rock based on wavelet packet and wavelet feature energy spectrum coefficient analysis. Useful acoustic emission signals are extracted by taking Symlets wavelet as wavelet basis function of acoustic emission signal of coal and rock and making denoising process with hybrid threshold algorithm. Then wavelet feature energy spectrum coefficient and wavelet packet eigenvector are obtained by using Matlab software to separately simulate wavelet packet decomposition for the useful acoustic emission signals and noise signals. Simulation results show that changing degree of each energy of eigenvector of the useful acoustic emission signals is bigger, while changing of energy of eigenvector of the noise signals is relatively stable, which can be used to identify acoustic emission signal of coal and rock.
出处 《工矿自动化》 北大核心 2013年第12期38-42,共5页 Journal Of Mine Automation
基金 "十二.五"国家科技支撑计划项目(2013BAK06B01)
关键词 煤岩破裂 声发射 小波基函数 去噪处理 小波包分解 小波特征能谱系数 coal and rock burst acoustic emission wavelet basis function denoising process wavelet packet decomposition wavelet feature energy spectrum coefficient
  • 相关文献

参考文献9

二级参考文献56

共引文献343

同被引文献50

  • 1石安平,周吕,王成,李欣益,马俊,黄玲.结合EMD与小波阈值去噪的GB-RAR桥梁监测信号去噪[J].测绘通报,2022(S02):227-232. 被引量:21
  • 2赵栓峰.多小波包频带能量的煤岩界面识别方法[J].西安科技大学学报,2009,29(5):584-588. 被引量:14
  • 3郭健,顾正维,孙炳楠,陈勇.基于小波分析的桥梁健康监测方法[J].工程力学,2006,23(12):129-135. 被引量:31
  • 4于凤英,田慕琴,胡金发.基于神经网络的煤岩界面识别[J].机械工程与自动化,2007(4):4-6. 被引量:7
  • 5MALLAT S G. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Transactions on Pattern Analysis ~ Machine Intelligence, 1989,11(7) :674-693.
  • 6DONOHO D L, JOHNSTONE J M. Ideal spatial adaptation by wavelet shrinkage [J ]. Biometrika, 1994,81(3) :425-455.
  • 7DUAN L X,ZHANG L B,WANG Z H. De-noising ot diesel vibration signal using wavelet packet and singular value decomposition [J]. Frontiers of Mechanical Engineering in China, 2006, 1 ( 4 ) 443-447.
  • 8YAN R Q, GAO R X. Base wavelet selection for bearing vibration signal analysis [J]. International Journal of Wavelets Multi-resolution & Information Processing, 2009,7 (4) : 411-426.
  • 9潘泉,张磊,盂晋丽.小波去噪方法及应用[M].北京:清华大学出版社,2005.
  • 10DAUBECHIES I. The wavelet transform, time- frequency localisation and signal analysis [J]. IEEE Transactions on Information Theory, 1990, 36 (5): 961-1005.

引证文献4

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部