期刊文献+

保持时间对涡轮盘材料GH4133合金热机械疲劳性能的影响 被引量:5

Influence of holding time on thermal mechanical fatigue behavior of GH4133 superalloy
下载PDF
导出
摘要 通过在热机械循环最高温度处进入不同保持时间 ,研究了保持时间对涡轮盘材料GH41 33合金热机械疲劳性能及其寿命的影响。结果表明 ,对于不同保持时间 ,无论是同相位热机械疲劳还是反相位热机械疲劳 ,材料在温度升高的过程中均呈现循环软化特性 ,并且随着应变量的增大循环软化速率加快 ,在温度降低的过程中无明显的循环硬化或循环软化 ;而保持时间对同相位热机械疲劳寿命影响较为显著 。 The thermal mechanical fatigue (TMF) tests were performed using a specific waveform applied different holding time at maximum temperature. On the basis of the TMF tests, the influence of holding time on the behavior and the failure life of the TMF under in phase (IP) and out of phase (OP) conditions were investigated. The test results show that the cyclic softening were observed at the cyclic maximum temperature under both IP and OP condition, but no obvious cyclic softening or cyclic hardening at cyclic minimum temperature. The tests results also show that the longer of the holding time, the shorter of the in phase TMF failure life of GH4133 superalloy, and no obvious influence of holding time on the out of phase TMF failure life.
出处 《航空材料学报》 EI CAS CSCD 2000年第4期20-25,共6页 Journal of Aeronautical Materials
关键词 热机械疲劳 GH4133合金 保持时间 疲劳寿命 航空发动机 涡轮盘材料 thermal mechanical fatigue, GH4133 superalloy, holding time, fatigue life
  • 相关文献

参考文献10

  • 1[3] UDOGUCHI T, WADA T. Thermal effect on low-cycle fatigue strength of steel. In: LITTLER D J eds. Thermal Stresses and Thermal Fatigue. London,1969.109-123.
  • 2[4] TARIS S, FUJINO M, HAJI T. Effect of mean temperature range on thermal fatigue strength of low carbon steel. J. Society Materials Science, Japan, 1973, 22:35.
  • 3[5] BEILING J, SLOT T. Effect of temperature and strain rate on low cycle fatigue resistance of AISI 304, 316 and 348 stainless steels. In: Fatigue at high temperature. ASTM STP 459. Lutharville-Timonium:1969:3-30.
  • 4[7] Engler-Pinto C C, Rezai-Aria F. Out-of-phase and in-phase thermo-mechanical fatigue behavior of IN738LC. Fatigue'96, 1996,2:831-836.
  • 5[9] JOOS R, ELZEY D M, ARZT E. Damage Mechanisms in an ODS-superalloy during isothermal and thermal-mechanical fatigue. In: BACHHELET E, BRUNETAUD R, COUTSOURADIS D eds. High temperature materials for power engineering. The Netherlands: Kluwer Academic, 1990,2,1173-1184.
  • 6[10] STRANGMAN T E. Thermal-mechanical fatigue life model for coated superalloy turbine components. Superalloys 1992. The Minerals Metals & Materials Society, 1992.795-804.
  • 7[11] REMY L. Fatigue life prediction under thermal-mechanical loading in a nickel-base superalloy. In: Thermo-mechanical fatigue behavior of materials, ASTM committee E9 on fatigue. ASTM STP 1186, 1993.3-16.
  • 8[12] CHATAIGNER E, FLRURY E, REMY L. Crack propagation and life prediction in a nickelbased superalloy under TMF conditions. In: BRESSERS J, REMY L eds. Proceedings of International symposium on fatigue under thermal and mechanical loading. The Netherlands: Kluwer Acadmic Publisher, 1995. 393-402.
  • 9[13] NEU R W, SEHITOGLU H. Thermomechanical fatigue, Oxidation and creep: Part II, Life Prediction. Metallurgical Transactions A, 1989. 20A(9): 1769-1783.
  • 10[14] SHEFFLER K.D. DOBLE GS.NASA-CR-121001,1973.

同被引文献26

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部