期刊文献+

基于ANN的大学生一般能力倾向对专业成绩的预测模型研究 被引量:2

Research on Predicting Model of University Students' General Aptitude for Major Achievement Based on ANN
下载PDF
导出
摘要 应用人工神经网络模型探讨一般能力倾向对不同专业大学生专业成绩的预测作用。以652名大学生为研究对象,将一般能力倾向特征作为预测因子,利用Clementine数据挖掘软件分别构建文、理、工三类专业大学生一般能力倾向对专业成绩的预测模型。研究表明:三类专业大学生一般能力倾向对专业成绩预测的人工神经网络模型估计的准确率均在90%以上,平均绝对预测误差值在0.091到0.106之间。该人工神经网络模型对三类专业的专业成绩预测具有较高的准确性,一般能力倾向可以用来预测不同专业学生的专业成绩,为中学生升学填报专业提供依据。 It applied the Artificial Neural Network (ANN) model to predict the major achievement of university students in different majors with their general aptitude. 652 university students were selected as subjects. With general aptitude of the students in liberal, science and engineering as predictive factors, ANN model was built by using Clementine. The results indicated that the accuracy of ANN model's esti- mation towards the major achievement by analysis of general aptitude for university students in different majors is all above 90%. The average absolute error was between 0. 091 and 0. 106. The model with some precisions showed that the ANN model made an accurate forecast of the three majors' achievement. The general aptitude can be used to predict students' achievement of different majors and to provide references for high school students in choosing a major.
出处 《蚌埠学院学报》 2013年第6期85-89,共5页 Journal of Bengbu University
基金 安徽省教育厅教研项目(2007JYXM456) 安徽省教育厅教学研究项目(2007JYXM456)
关键词 一般能力倾向 大学生 人工神经网络 专业成绩 general aptitude university students Artificial Neural Network major achievement
  • 相关文献

参考文献12

二级参考文献36

  • 1郭秀艳,邹玉梅,李强,孙怡.中学生颜色内隐学习特征的实验研究[J].心理与行为研究,2003,1(2):116-121. 被引量:10
  • 2郭秀艳,朱磊.神经网络模型对内隐学习的探索[J].心理科学,2006,29(2):480-484. 被引量:8
  • 3杨清彦,李斌会,李宜强,兰玉波.聚合物驱波及系数和驱油效率的计算方法研究[J].大庆石油地质与开发,2007,26(1):109-112. 被引量:21
  • 4王冬梅,韩大匡,侯维虹,曹瑞波,武力军.聚合物驱剖面返转类型及变化规律[J].大庆石油地质与开发,2007,26(4):96-99. 被引量:28
  • 5李孝忠.能力心理学[M].西安:陕西人民教育出版社,1985.4.
  • 6.中华人民共和国职业分类大典[M].北京:中国劳动社会保障出版社,1999..
  • 7Mango LJ. Computer-assisted cervical cancer screening using neural networks. Cancer Letter, 1994, 77: 155-162.
  • 8Edwards F, Zazulia AR. Artificial neural networks improve the prediction of mortality in intracerebra hemorrhage, Neurology, 1999, 53:351-357.
  • 9Cleeremans A.Mechanisms of Implicit Learning:Connectionist Models of Sequence Processing.In:Jeffrey L E ed.Neural Network Modeling and Connectionism.London:MIT Press,1993
  • 10Dienes Z,Perner J.Implicit knowledge in people and connectionist networks.In:Underwood G..Implicit cognition.Oxford:Oxford University Press,1996

共引文献94

同被引文献12

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部