期刊文献+

激光焊接不锈钢微间隙焊缝偏差角点检测法 被引量:7

Detection of seam deviation of micro butt gap in laser welding of 304 austenitic stainless steel based on corner point method
下载PDF
导出
摘要 针对大功率(10 kW)光纤激光焊接304不锈钢紧密对接微间隙焊缝(焊缝间隙小于0.1 mm),通过高速像机摄取熔池近红外热像并分析其特征,分析和处理熔池热像特征,提取激光束偏离焊缝位置的信息,探索激光束与焊缝偏差的信息表征.利用激光深熔焊的匙孔效应,研究焊缝在固态与液态交界处不稳定边缘特征点,提出一种角点检测法实现微间隙焊缝偏差的检测.结果表明,熔池红外热像角点密集分布中心与焊缝偏差有密切的关系,通过角点分布密度可以有效判断焊缝偏差状态. Infrared radiation from the molten pool contains plenty of welding status information including the characteristics of the seam deviation.Infrared images of the molten pool were captured by an infrared sensitive high-speed camera during high power(10kW) fiber laser butt joint welding of 304 austenitic stainless steel with micro-gap seam(seam gap width was less than 0.1mm).By analyzing the molten pool characteristics,the information of seam deviation was explored.A keyhole formed when the laser beam was focused on a weldment and the metal vaporized instantly.Features of the keyhole infrared images,especially the characteristics of conjunction between the solid and liquid zones with unstable burr edge of seam were studied.A corner point detection method was proposed to detect the microgap seam deviation in high power laser welding process.Experimental results showed that the dense distribution center of the corner points of a molten pool infrared image had a close relationship with the weld seam deviation.The micro-gap weld seam deviation status in high power fiber laser welding can be determined by the corner point distribution density.
出处 《焊接学报》 EI CAS CSCD 北大核心 2013年第12期1-4,117,共4页 Transactions of The China Welding Institution
基金 国家自然科学基金资助项目(51175095) 广东省自然科学基金资助项目(10251009001000001 9151009001000020) 高等学校博士学科点专项科研基金资助项目(20104420110001)
关键词 大功率光纤激光焊 近红外热像 焊缝偏差 角点检测 high power fiber laser welding near infrared thermal image seam deviation corner point detection
  • 相关文献

参考文献7

二级参考文献20

  • 1高向东,丁度坤,宋要武,赵传敏.熔池图像质心算法的焊缝位置测量模型[J].焊接学报,2007,28(3):1-4. 被引量:7
  • 2Wu Q, Gong J K, Chen G Y, et al. Research on laser welding of vehicle body [ J ]. Optics & Laser Technology, 2008, 40 (2) : 420 - 426.
  • 3Fabfice B, Adolfo C, Jose M L H, et al. Optical techniques for real-time penetration monitoring for laser welding [ J ]. Applied Optics, 2005, 44 (19) : 3869 -3876.
  • 4Xu Peiquan, Tang Xinhua, Yao Shun. Application of circular la- ser vision sensor (CLVS) on welded seam tracking[ J]. Journal of Materials Processing Technology, 2008, 24 (7) : 404 - 410.
  • 5Quintino L, Costa A, Miranda R, et al. Welding with high power fiber lasers-A preliminary study [ J ]. Materials & Design, 2007, 28(4) : 1231 -1237.
  • 6GAO X D, NA S J. Detection of weld position and seam tracking based on Kalman filtering of weld pool images [ J ]. Journal of Manufacturing Systems, 2005, 24( 1 ) : 1 - 12.
  • 7Kawahito Y,Terajima T,Kimura H,et al.High-power fiber laserwelding and its application to metallic glass Zr55Al10Ni5Cu30[J].Materials Science and Engineering B,2008,148(1/3):105-109.
  • 8Kawahito Y,Mizutani M,Katayama S.Elucidation of high-powerfibre laser welding phenomena of stainless steel and effect of factorson weld geometry[J].Journal of Physics D:Applied Physics,2007,40(19):5854-5859.
  • 9Tung P C,Wu M C,Hwang Y R.An image-guided mobile roboticwelding system for SMAW repair processes[J].International Jour-nal of Machine Tool and Manufacture,2004,44(11):1223-1233.
  • 10Huang D,Chow T W S.Improving the effectiveness of RBF classi-fier based on a hybrid cost function[J].Neural Comput&Applic,2007,16(4/5):395-405.

共引文献21

同被引文献92

引证文献7

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部