期刊文献+

基于流形学习LPP算法的语音特征提取应用 被引量:2

Speech Feature Extraction based on LPP Manifold Learning Algorithm
原文传递
导出
摘要 语音识别系统中,语音的特征提取是语音识别的关键技术之一。通过对语音的系统研究,提出一种全新的基于流形学习的特征提取方法。流形算法是近些年才发展起来的非线性降维方法,在人脸识别领域已取得较好效果,但在语音识别领域一直处于空白。现提出的基于流形学习LPP算法的语音特征提取方案,是一次重大的尝试,可以为以后深入研究语音识别技术提供较好参考。仿真实验结果表明,该算法与传统特征提取LPCC、MFCC算法相比,可以取得较好的识别率。 Speech feature extraction is one of the key technologies in speech recognition systems through systematic study of phonetic system, a new feature extraction based on manifold learning is proposed. Man- ifold algorithm, as a non-linear dimension reduction method developed in recent years, has achieved fairly good results in facial recognition field, but is still nonexistent in the field of speech recognition. However, the newly-proposed scheme of speech feature extraction based on LPP algorithm of the manifold learning is a significant try and may provide a good reference for further study of speech recognition technology. The simulation experiment shows that this algorithm has better recognition rate as compared with LPCC, MFCC algorithms of traditional feature extraction.
作者 季伟 王力
出处 《通信技术》 2013年第12期15-18,共4页 Communications Technology
关键词 流形学习 语音识别 特征提取LPP算法 manifold learning speech recognition feature extraction LPP algorithm
  • 相关文献

参考文献10

  • 1赵振东,张静,李圆,胡喜梅.基于GMM说话人分类的说话人识别方法研究[J].通信技术,2009,42(10):192-193. 被引量:4
  • 2张旭博,周渊平.基于MFCC和VQ码书的说话人识别系统研究[J].通信技术,2009,42(9):162-164. 被引量:4
  • 3徐蓉,姜峰,姚鸿勋.流形学习概述[J].智能系统学报,2006,1(1):44-51. 被引量:67
  • 4赵连伟,罗四维,赵艳敞,刘蕴辉.高维数据流形的低维嵌入及嵌入维数研究[J].软件学报,2005,16(8):1423-1430. 被引量:54
  • 5BELKIN M, NIYOGI P. Laplacianeigenmaps for Dimen- sionality Reduction and Data Representation [ J ]. Neural Computation ,2003,15 ( 06 ) : 1373-1390.
  • 6SEUNG H S, LEE D D. The Manifold Ways of Perception [ J ]. Science ,2000,290( 5500 ) :2268-2269.
  • 7TENENBAUM J, SILVA D D, LANGFORD J. A Global Geometric Framework for Nonlinear Dimensionality Re- ductiaon[ J]. Science,2000,290(5500) :2319-2323.
  • 8ROWEIS S,SAUL L. Nonlinear Dimensionality Reduction by Locally Linear Embedding [ J ]. Science, 2000, 290 (5500) : 2323-2326.
  • 9HE X F, NIYOGI P. Locality Preserving Projections [ C ]//Advances in Neural Information Processing Sys- tem. Cambridge : MIT Press,2004 : 327- 334.
  • 10HE X F,YAN S C,HU Y X,et al. Face Recognition Using Kaplacian Faces [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(03) :328-340.

二级参考文献44

  • 1白莹,赵振东,戚银城,王斌,郭建勇.基于小波神经网络的与文本无关说话人识别方法研究[J].电子与信息学报,2006,28(6):1036-1039. 被引量:7
  • 2陈亚勇,等.MATLAB信号处理详解[M].北京:人民邮电出版社,2004.
  • 3Xuedong Huang, Kai-Fu Lee. On Speaker-Independent, SpeakerDependent, and Speaker-Adaptive Speech Recognition[J]. IEEE Transactions on Speech and Audio Processing, 19931(02): 150-157.
  • 4Qin Jin, Schultz T, Waibel h. Far-Field Speaker Recognition[J]. IEEE Trans. on Audio, Speech and Language processing, 2007, 15(7):2023-2032.
  • 5Bing Sun. Hierarchical Speaker Identification Using Speaker Clustering[J]. IEEE 2003:299-304.
  • 6Burget L, Matejka P, Schwarz P. Analysis of Feature Extraction and Channel Compensation in a GMM Speaker Recognition System[J]. Trans. on Audio, Speech and language Processing, 2007,15(7):1979-1986.
  • 7Zhang Qinhua, Benveniste AI. Wavelet Networks[J]. IEEE Trans on Neural Networks, 1992,3(6):889-898.
  • 8Bing Xiang, Berger T. Efficient Text-independent Speaker Verification with Structural Gaussian Mixture Models and Neural Network[J]. IEEE Trans. on Speech and Audio Processing, 2003,11(5):447-456.
  • 9[1]HYVRINEN A.Survey on independent component analysis[J].Neural Computing Surveys,1999,2 (4):94-128.
  • 10[2]TURK M,PENTLAND A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience,1991,3 (1):71-86.

共引文献113

同被引文献11

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部