期刊文献+

不同热处理态2024铝合金的腐蚀行为(英文) 被引量:10

Corrosion behavior of 2024 Al-Cu-Mg alloy of various tempers
下载PDF
导出
摘要 分别在3.5%NaCl溶液、3.5%NaCl+1.0%H2O2溶液和pH=12的3.5%NaCl溶液中进行动电位极化实验,研究2024 Al-Cu-Mg合金在不同热处理状态下的腐蚀行为。极化曲线表明,随着合金时效时间的延长,合金的腐蚀电位向负方向移动;向NaCl溶液中添加H2O2会使腐蚀电位正移;在pH=12的3.5%NaCl溶液中的极化曲线表现出明显的钝化现象。腐蚀试样表面表现为常见的腐蚀特征,但也有扩大的点蚀、晶间腐蚀现象出现。循环动电位极化曲线显示有宽的循环极化滞后环,不同的腐蚀模式表明合金的点蚀生长对合金的热处理状态敏感。通过显微组织分析,探讨了不同热处理状态下合金在不同NaCl溶液中的腐蚀机理。 Corrosion behavior of 2024 Al-Cu-Mg alloy of different tempers was assessed by potentiodynamic polarization studies in 3.5% NaCl solution, 3.5% NaCI+I.0% H2O2 solution and 3.5% NaCl solution at pH 12. Polarization curves showed shifting of corrosion potential (φPcor) towards more negative potential with increasing ageing time and shifting of φcorr in the positive direction with the addition of H2O2 in NaCl solution. Polarization curves in 3.5% NaCl solution at pH 12 exhibited distinct passivity phenomenon. Optical micrographs of the corroded surfaces showed general corrosion, extensive pitting and intergranular corrosion as well. Cyclic potentiodynamic polarization curves exhibited wide hysteresis loop and the mode of corrosion attack confirmed that the alloy states are susceptible to pit growth damage. Attempts were made to explain the observed corrosion behavior of the alloy of various tempers in different electrolytes with the help of microstructural features.
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第11期3215-3227,共13页 中国有色金属学报(英文版)
关键词 2024铝合金 时效行为 电化学极化 钝化 点蚀电位 2024 Al-Cu-Mg alloy ageing behavior electrochemical polarization passivity pitting potential
  • 相关文献

参考文献52

  • 1ESKIN D G. Decomposition of supersaturated solid solutions in AI-Cu Mg-Si alloys [J]. J Materials Science, 2003, 38(2): 279-290.
  • 2POLMEAR I ~. Light alloys metallurgy of the light metals [M]. London, UK: Arnold Publication, 1995: 24, 67.
  • 3BROOKS C R. Heat treatment, structure and properties of nonferrous alloys [M]. Metals Park, Ohio, USA: American Society for Metals, 1982: 121.
  • 4CHAKRABARTI D J, LAUGHIN D E. Phase relations and precipitation in AI-Mg-Si alloys with Cu additions [J]. Progress in Material Science, 2004, 49(3-4): 389-410.
  • 5BUCHHEIT R G, GRANT R P, HILAVA P F, McKENZIE B, ZENDER G L. Local dissolution phenomenon associated with S phase (A12MgCu) particles in aluminium alloy AA 2024-T3 [J]. Electrochemical Society, 1997, 144(8): 2621-2628.
  • 6BOAG A, HUGES A E, GLENN A M, MUSTER T H, McCuLLOCH D. Corrosion of 2024-T3. Part I: Localised corrosion of isolated IM particles [J]. Corrosion Science, 2011,53(1): 17-26.
  • 7DAVIS J R. Corrosion of aluminium and aluminium alloys [M]. Ohio, USA: ASM International, 1999. 1.
  • 8BOAG A, HUGES A E, WILSON N C, TORPY A, MACRAE C M, GLENN A M, MUSTER T H. How complex is the microstructure of 2024-T3 [J]. Corrosion Science, 2009, 51 (8): 1565-1568.
  • 9ZHANG W, FRANKEL G S. Transitions between pitting and intergranular corrosion in AA 2024 [J]. Electrochemica Aeta, 2003, 48(9): 1193-1210.
  • 10GUILLAUMIN V, MANKOWSKI G. Localised corrosion of 2024 T351 aluminium alloy in chloride media [J]. Corrosion Science, 1999, 41(3): 421 438.

同被引文献124

引证文献10

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部