期刊文献+

超细镍纳米线拉伸性能的温度和应变率相关性的分子动力学研究(英文) 被引量:1

Molecular dynamics study on temperature and strain rate dependences of mechanical tensile properties of ultrathin nickel nanowires
下载PDF
导出
摘要 基于EAM势,采用分子动力学方法对超细镍纳米线(直径分别为3.94、4.95和5.99 nm)在?100?晶向的拉伸性能进行研究,并对其温度相关性和拉伸应变率相关性进行探讨。结果表明:弹性模量和屈服强度随着温度的升高而逐渐降低,并且随着拉伸应变率的增大,应力—应变曲线波动程度变大,超细镍纳米线发生断裂时的应变越来越小。在0.01 K温度下,超细镍纳米线屈服强度随拉伸应变率的升高迅速降低;但在其它温度条件下,拉伸应变率对弹性模量和屈服强度的影响较小。简要分析尺寸大小对镍纳米线拉伸性能的影响。 Based on the EAM potential, a molecular dynamics study on the tensile properties of ultrathin nickel nanowires in the (100〉 orientation with diameters of 3.94, 4.95 and 5.99 nm was presented at different temperatures and strain rates. The temperature and strain rate dependences of tensile properties were investigated. The simulation results show that the elastic modulus and the yield strength are gradually decreasing with the increase of temperature, while with the increase of the strain rate, the stress--strain curves fluctuate more intensely and the ultrathin nickel nanowires rupture at one smaller and smaller strain. At an ideal temperature of 0.01 K, the yield strength of the nanowires drops rapidly with the increase of strain rate, and at other temperatures the strain rate has a little influence on the elastic modulus and the yield strength. Finally, the effects of size on the tensile properties of ultrathin nickel nanowires were briefly discussed.
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第11期3353-3361,共9页 中国有色金属学报(英文版)
基金 Project(51205302)supported by the National Natural Science Foundation of China Project(2013JM7017)supported by the Natural Science Basic Research Plan in Shanxi Province of China Project(K5051304006)supported by the Fundamental Research Funds for the Central Universities,China
关键词 超细镍纳米线 温度相关性 应变率相关性 拉伸性能 分子动力学模拟 ultrathin nickel nanowires temperature dependence strain rate dependence tensile properties molecular dynamics simulation
  • 相关文献

参考文献3

二级参考文献21

  • 1[1]Brandes E A, Brook G B. Smithells Metals Reference Book,Butterworth-Heinemann, Linacre House, Jordan Hill,OxfordOX2 8DP,(1998).
  • 2[2]Anderws P V, West M B, Robeson C R et al. The effect ofgrain boundaries on the electrical resistivity of polycrystallinecopper and aluminium. Phil. Mag.,1969, 19(161):887-898.
  • 3[3]Pry R H, Hennig R W. On the use of electrical resistivity as ameasure of plastic deformation in copper. Acta Metal.,1954,2(3):318-321.
  • 4[4]Christian J W, Mahajan S. Deformation Twinning. Prog. Mat.Sci.,1995,39(1):1-157.
  • 5[5]Dahlgren S D et al. Thin Solid Films,1977,40:345.
  • 6[6]Lu L, Shen Y F, Chen X H et al. Ultrahigh strength and highelectrical conductivity in copper. Science,2004,304(5 669):422-426.
  • 7[7]Sanders P G, Eastman J A, Weertman J R. Elastic and tensilebehavior of nanocrystalline copper and palladium. Acta Mater.,1997,45(10):4 019-4 025.
  • 8[8]Wang Y, Chen M, Zhou F et al. High tensile ductility in ananostructured metal. Nature,2002,419(6 910):912-914.
  • 9[9]Brenner S S. Tensile strength of whiskers. J Appl Phys, 1956,27(12):1 484-1 491.
  • 10[10]Koch C C, Morris D G, Lu K et al. Dutility of nanostructuredmaterials. MRS Bull,1999,24(2):54-58.

共引文献34

同被引文献7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部