期刊文献+

基于单核苷酸多态性的基因互作分析方法学进展 被引量:5

Advances in development of gene-gene interaction analysis methods based on SNP data: a review
下载PDF
导出
摘要 基于单核苷酸多态性的关联分析已成为当前解析人类常见复杂疾病遗传机制的重要手段之一,然而,目前普遍使用的单位点分析策略仅能发现部分单独效应显著的易感SNP位点,因此遗漏了重要的遗传力组分——基因上位效应或联合效应。识别全基因组多基因间复杂的互作关系已成为全面解析复杂疾病致病分子机制必不可少的一项任务。已有很多方法被应用于全基因组交互作用分析,加深了人类对复杂疾病遗传机制的进一步认识。基于各类方法的理论基础及算法的异同,文章对目前应用较为广泛的基于遗传互作模型的方法、不基于互作模型的方法和数据挖掘类算法3类方法进行了系统地评述,着重介绍了这些方法的主要思想、实现过程及应用中的注意事项等,并指出开展大规模全基因组范围互作检测面临的问题,以期能为相关领域的研究者提供方法学参考。 The SNP-based association analysis has become one of the most important approaches to interpret the under- lying molecular mechanisms for human complex diseases. Nevertheless, the widely-used singe-locus analysis is only capa- ble of capturing a small portion of susceptible SNPs with prominent marginal effects, leaving the important genetic compo- nent, epistasis or joint effects, to be undetectable. Identifying the complex interplays among multiple genes in the ge- nome-wide context is an essential task for systematically unraveling the molecular mechanisms for complex diseases. Many approaches have been used to detect genome-wide gene-gene interactions and provided new insights into the genetic basis of complex diseases. This paper reviewed recent advances of the methods for detecting gene-gene interaction, categorizedinto three types, model-based and model-free statistical methods, and data mining methods, based on their characteristics in theory and numerical algorithm. In particular, the basic principle, numerical implementation and cautions for application for each method were elucidated. In addition, this paper briefly discussed the limitations and challenges associated with detect- ing genome-wide epistasis, in order to provide some methodological consultancies for scientists in the related fields.
出处 《遗传》 CAS CSCD 北大核心 2013年第12期1331-1339,共9页 Hereditas(Beijing)
基金 国家自然科学基金项目(编号:30830104 31071166) 广东省科技计划攻关项目(编号:2009A030301004) 东莞市科技重点项目(编号:201108101015) 广东医学院基金项目(编号:XG1001 XZ1105 STIF201122)资助
关键词 SNP 基因互作 模型依赖 数据挖掘算法 下游功能学分析 SNP/gene-gene interaction model dependence data mining algorithm downstream function analysis
  • 相关文献

参考文献35

  • 1Cordell HJ. Detecting gene-gene interactions that underlie human diseases[J].Nature Reviews Genetics,2009,(06):392-404.
  • 2Moore JH. The ubiquitous nature of epistasis in determining susceptibility to common human diseases[J].Human Heredity,2003,(1-3):73-82.
  • 3Marchini J,Donnelly P,Cardon LR. Genome-wide strategies for detecting multiple loci that influence complex diseases[J].Nature genetics,2005,(04):413-417.doi:10.1038/ng1537.
  • 4Briggs FBS,Ramsay PP,Madden E,Norris JM Holers VM Mikuls TR Sokka T Seldin MF Gregersen PK Criswell LA Barcellos LF. Supervised machine learning and logistic regression identifies novel epistatic risk factors with PTPN22 for rheumatoid arthritis[J].Genes and Immunity,2010,(03):199-208.doi:10.1038/gene.2009.110.
  • 5Epstein MP,Satten GA. Inference on haplotype effects in case-control studies using unphased genotype data[J].American Journal of Hunan Genetics,2003,(06):1316-1329.
  • 6Purcell S,Neale B,Todd-Brown K,Thomas L Ferreira MA Bender D Maller J Sklar P de Bakker PI Daly MJ Sham PC. PLINK:a tool set for whole-genome association and population-based linkage analyses[J].American Journal of Hunan Genetics,2007,(03):559-575.
  • 7Wu XS,Dong H,Luo L,Zhu Y,Peng G,Reveille JD,Xiong MM. A novel statistic for genome-wide interaction analysis[J].PLoS Genetics,2010,(09):e1001131.
  • 8Ueki M,Cordell HJ. Improved statistics for genome-wide interaction analysis[J].PLoS Genetics,2012,(04):e1002625.
  • 9Rao SQ,Yuan MQ,Zuo XY,Su WY,Zhang F,Huang K,Lin MH,Ding YL. A novel evolution-based method for detecting gene-gene interactions[J].PLoS ONE,2011,(10):e26435.
  • 10Breiman L. Random forests[J].Machine Learning,2001,(01):5-32.

二级参考文献4

共引文献11

同被引文献95

  • 1饶妮妮,邱丽君.DNA序列数值映射方法的研究[J].生物医学工程学杂志,2005,22(4):681-685. 被引量:10
  • 2ZHAO Jinying, JIN Li, XIONG Momiao. Test for interaction between two unlinked loci[ J]. Am J Hum Genet ,2006, 79 ( 5 ) : 831-845.
  • 3PENG Qianqian, ZHAO Jinghua, XUE Fuzhong. A gene-based method for detecting gene-gene co- association in a case-control association study [ J ]. Eur J Hum Genet,2010, 18(5) : 582-587.
  • 4LARSON N B, SCHAID D J. A kernel regression approach to genc-gene interaction detection for case- control studies[ J]. Genet Epidemiol,2013, 37 (7) : 695 -703.
  • 5YUAN Zhongshang, GAO Qingsong, HE Yungang, et al. Detection for gene-gene co-association via kernel canonical correlation analysis [ J ]. BMC Genet,2012, 13: 83.
  • 6LARSON N B, JENKINS G D, LARSON M C, et al. Kernel canonical correlation analysis for assessing gene-gene interactions and application to ovarian cancer[J]. Eur J Hum Genet, 2014, 22 (1) : 126-131.
  • 7YUAN Zhongshang, LIU Hong, ZHANG Xiaoshuz , et al. From interaction to co-association -a Fisher r- to-z transformation-based simple statistic for real world genome-wide association study [ J]. Plos One, 2013, 8(7): 1-8.
  • 8LI Jing, CHEN Yixuan. Generating samples for association studies based on HapMap data[J]. BMC Bioinformatics,2008, 9 : 44-57.
  • 9YAMANISHI Y, VERT J P, NAKAYA A, et al. Extraction of correlated gene clusters from multiple genomic data by generalized kernel canonical correlation analysis [ J ]. Bioinformatics, 2003, 19 ( Suppl 1 ) : 323-330.
  • 10LAI P L, FYFE C. Kernel and nonlinear canonical correlation analysis[ J]. Int J Neural Syst,2000, 10 ( 5 ) : 365-377.

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部