期刊文献+

城市快速路区间旅行时间短期预测算法 被引量:1

A New Algorithm of Short-term Travel Time Prediction for Urban Expressway
下载PDF
导出
摘要 在分析浮动车数据的时间相关性的基础上,研究城市快速路的区间旅行时间短期预测算法.采用统计方法和K-NN分类法相结合的方法对缺失数据进行填充,并利用小波变换对每天的数据进行消噪处理.在分别利用时间序列模型和人工神经网络模型对城市快速路区间旅行时间进行短期预测的基础上,通过模型组合获得预测值.结合北京市区二环的一段快速路区间旅行时间的历史数据和实时数据,对提出的快速路区间旅行时间短期预测算法进行了评价.结果显示,该算法的预测结果的平均绝对误差百分比控制在10.43%以内,具有良好的精度. The prediction of urban road traffic status is a key to achieve ITS technologies such as future road traffic information query platform and dynamic route guidance system. It studied the algorithm of short-term travel time prediction, based on the analysis of temporal correlation of floating car data collected from urban expressway. First, the missing data was complemented with a new method which combined statistical method and K-NN classification approach, and data de-noising based on wavelet transformation approach was executed. Second, the final result was estimated, based on the short-term travel time prediction results forecasted with time series model and artificial neural network model respectively. Finally, using the data collected from the 2nd Ring Expressway in Beijing, the proposed algorithm was evaluated. The results show that the mean absolute percentage error (MAPE) is limited in 10.43% successfully, and the algorithm is expected to have a good performance in short-term travel time prediction.
出处 《武汉理工大学学报(交通科学与工程版)》 2013年第6期1133-1137,共5页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 国家科技支撑计划项目(批准号:2011BAG01B01) 北京交通大学校科技基金项目(批准号:T10J00020)资助
关键词 浮动车 旅行时间预测 时间序列 人工神经网络 组合模型 Floating Car Travel Time Prediction Time Series Model BP Artificial Neural Network Combination Model
  • 相关文献

参考文献9

  • 1北京市社会科学院.2010-2011北京城乡发展报告[R].北京:北京市社会科学院,2011.
  • 2FUJITA T, YAO E. Travel time prediction using probe-car data[C]. 13th World Congress on ITS, 2006.
  • 3ZHAO Y. Vehicle location and navigation system [M]. Norwood, MA: Artech House Publishers,1997.
  • 4张静,蔡伯根,吴建平.移动检测技术的研究[J].北方交通大学学报,2003,27(3):80-83. 被引量:12
  • 5van AERDE M, HELLINGA B, YU L, et al. Vehicle proves as real-time ATMS sources of dynamic O-D and travel time data [C]. Large Urban Systems- Proc. , ATMS Conf,1993:207-230.
  • 6SANWAL K K, WALRAND J. Vehicles as probes, Report No. UCB-ITS-PWP-95-11, California PATH Program [R]. Institute of Transportation Studies, University of California, Berkeley, 1995 : 34-36.
  • 7GAO Y, ER M J. NARMAX time series model pre- diction., feed-forward and recurrent fuzzy neural net- work approaches[J]. Fuzzy Sets and Systems,2005, 150(2) :331-350.
  • 8YIN HB, WONGSC, XUJ M, etal. Urban traffic flow prediction using a fuzzy-neural approach[J]. Transportation Research Part C, 2002,10 ( 2 ) : 85-98.
  • 9李晓莉,石建军.行程时间异常值处理方法研究[J].武汉理工大学学报(交通科学与工程版),2012,36(1):116-119. 被引量:17

二级参考文献11

  • 1邵杰,黄山.城市道路路段车辆旅行时间检测系统的研究[J].道路交通与安全,2002,0(5):2-5. 被引量:2
  • 2Hallenbeck M, Boyle T,Ring J. Use of Automatic Vehicle Identification Techniques for Measuring Traffic Performance and Performing Incident Detection[R]. Washington D. C. :Washington State Transportation Center/University of Washington, 1992.
  • 3Angelo M,A1-Deek H,Wang M. Travel Time Prediction for Freeway Corridors[A]. Transportation Research Record 1676[C]. Washington D. C. :TRB, 1999. 184- 191.
  • 4Rilett L, Park D. Direct Forecasting of Freeway Corridor Travel Times Using Spectral Basis Neural Networks[A]. Transportation Research Record 1752[C]. Washington D. C. :TRB,2001. 140-147.
  • 5Sodeikat H. Co-operative Transport Management with EURO-SCOUT[M]. Ian Catling: ed. Artech House, 1995.
  • 6Boyce D, Kirson A, Schofer J.Design and Implementation of ADVANCE[A]. Proc Third International Conference on Vehicle Navigation and Information Systems[C]. Ottawa:IEEE, 1993. 415-426.
  • 7Won-Seop Han, Keechoo Choi. KORTIC:An Implementation of A KoreaTraffie Information Center over Metropolitan Seoul Region[A]. The 4th ITS World Congress[CD]. Berlin: ITS Europe/ITS Japan/ITS America, 1996.
  • 8Chen M, Chien S. Determining the Number of Probe Vehicles for Freeway Travel Time Estimation Using Microscopic Simulation[J]. Transportation Research Record 1719. Washington D. C. :TRB/National Research Council, 2000.61- 68.
  • 9Chen M, Chien S I L. Dynamic Freeway Travel Time Prediction Using Probe Vehicle Data: Link-based vs Path-based[A].Transportation Research Board 80th Annual Meeting[CD]. Washington D. C. :TRB,2001.1- 2887.
  • 10宋俪婧,陈金川,石建军,王书灵.应用车辆牌照自动识别系统自动检测行程延误的算法研究[J].交通运输工程与信息学报,2008,6(2):107-112. 被引量:2

共引文献27

同被引文献7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部