期刊文献+

巴拿赫空间上发展算子的非一致多项式三分性 被引量:1

On nonuniform polynomial trichotomy of evolution operators in Banach space
原文传递
导出
摘要 讨论了巴拿赫空间上发展算子的非一致多项式三分性的积分特征,说明了一致多项式三分性与非一致多项式三分性的关系,并且给出了满足非一致多项式三分性而不满足一致多项式三分性的一个反例。 The integral properties of nonuniform polynomial trichotomy of evolution operators are discussed in Banach space, and an example is illustrated the relationship between the two polynomial trichotomies which shows the evolution operator is nonuniform polynomial trichotomy but not uniform polynomial trichotomy.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2013年第12期80-85,共6页 Journal of Shandong University(Natural Science)
基金 中央高校基本科研业务费专项资金资助项目(2010LKSX08)
关键词 发展算子 非一致多项式三分性 巴拿赫空间 共轭空间 evolution operator nonuniform polynomial trichotomy Banach space dual space
  • 相关文献

参考文献10

  • 1ALONSO A I, HONG Jialin, OBAYA R. Exponential dichotomy and trichotomy for difference equations[ J]. Computers and Mathematics with Applications, 1999, 38( 1 ) :4149.
  • 2JIANG Yongxin. Robustness of a nonuniform trichotomy in Banach spaces [J]. Electronic Journal of Differential Equa- tions, 2012, 2012(154) :1-11.
  • 3LIU Jinghuai, SONG Xiaoqiu. Almost automorphic and weighted pseudo almost automorphic solutions of semilinear evolution equtions [ J ]. Journal of Functional Analysis, 2010, 258 ( 1 ) : 196-207.
  • 4LIU.Jinghuai, SONG Xiaoqiu, ZHANG Pingli. Weighted pseudo almost periodic mild solutions of semilinear evolution equa- tions with nonlocal conditions[ J]. Applied Mathematics and Computation, 2009, 215(5) :1647-1652.
  • 5BARUTIA M G, CEAUSU T, SEIMEANU N. On uniform exponential dichotomy of evolution operators [ J ]. Seria Matemati- ca Informatica, 2012, L(2) :3-14.
  • 6MEGAN M, CEAUSU T, RAMNEANTU M L. Polynomial stability of evolution operators in banach spaces E J ]. Opuscula Mathematica, 2011, 31 ( 2 ) :279-288.
  • 7RAMNEANTU M L, CEAUSU T, MEGAN M. On nonuniform polynomial dichotomy of evolution operators in Banach spaces [J]. International Journal of Pure and Applied Mathematics, 2012, 75(3) :305-318.
  • 8SACKER R J, SELL G R. Existence of dichotomies and invariant splittings of linear differential systems, III[ J]. Journal of Differential Equations, 1976, 22 (2) :497-522.
  • 9MEGAN M, STOICA C. On uniform exponential trichotomy of evolution operators in Banach spaces [ J]. Intergral Equations and Operator Theory, 2008, 60(4) :499-506.
  • 10RAMNEANTU M L. Uniform polynomial trichotomy of evolution operators in Banach spaces E J ]. Journal of Advanced Mathematical Studies, 2012, 5 (2) 101-106.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部