期刊文献+

一类新的精确增广Lagrangian函数的性质

Properties of a new kind of exact augmented Lagrangian function
原文传递
导出
摘要 针对含有等式和不等式混合约束的最优化问题引进了一种新的精确增广Lagrangian函数。证明了该类增广Lagrangian函数的基本性质。进一步,在较弱的条件下证明了无约束问题的稳定点与原约束问题的KKT点之间的等价性。 A new kind of augmented Lagrangian function for constrained optimization problem with both equality and in-equality contraints is introduced. The elementary properties of this kind of function are given. Furthermore, the equiva-lence between its slationary point of uncontrained minimization and the KKT point of the original constrained problem is proved.
作者 李梅霞 刘茜
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2013年第12期90-95,共6页 Journal of Shandong University(Natural Science)
基金 北京市博士后工作经费资助项目(2012ZZ-23) 国家自然科学基金资助项目(10901096) 山东省自然科学基金资助项目(ZR2009AL019) 山东省高校科研发展计划项目(J09LA53)
关键词 约束最优化 增广Lagrangian函数 性质 constrained optimization augmented Lagrangian function property
  • 相关文献

参考文献10

  • 1FLETCHER R E. A class of methods for nonlinear programming with termination and convergence properties[ M]//ABADIEJ, Integer and Nonlinear Programming. Amsterdam: North-Holland, 1970: 157-173.
  • 2FLETCHER R E. An exact penalty function for nonlinear programming with inequalities EJ ]. Mathematical Programming, 1973, 5:129-150.
  • 3DI PILLO G, GRIPPO L. A new class of augmented Lagrangian function in nonlinear programming E J ]. SIAM Journal on Control and Optimization, 1979, 17:618-628.
  • 4DI PILLO G, GRIPPO L. A new augmented Lagrangian function for inequality constraints in nonlinear programming problems [ J ]. Journal of Optimization Theory and Applications, 1982, 36:495-519.
  • 5LUCIDI S. New results on a class of exact augmented Lagrangians E J ]. Journal of Optimization Theory and Applications, 1988, 58:259-282.
  • 6DI PILLO G, LUCIDI S. An augmented Lagrangian function with improved exactness propertiesE J]. SIAM Journal on Opti- mization, 2001, 12:376-406.
  • 7ZHOU Yuying, YANG Xiaoqi. Duality and penalization in optimization via an augmented Lagrangian function with applica- tions E J ]. Journal of Optimization Theory and Applications, 2009, 140 : 171-188.
  • 8LUO Hezhi, SUN Xiaoling, LI Duan. On the convergence of augmented Lagrangian methods for constrained global optimiza- tion[ J]. SIAM Journal on Optimization, 2007, 18:1209-1230.
  • 9WU Huixian, LUO Hezhi. Saddle points of general augmented Lagrangians for constrained nonconvex optimization [ J]. Jour- nal of Global Optimization, 2012, 53 : 683-697.
  • 10HUANG Xuexiang, YANG Xiaoqi. Further study on augmented Lagrangian duality theory [ J ]. Journal of Global Optimiza- tion, 2005, 31:193-210.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部