期刊文献+

产胶期溶氧水平对土壤杆菌ATCC31749发酵产热凝胶流变性质的影响 被引量:2

Effect of Dissolved Oxygen Level on the Rheological Properties of Curdlan Fermented by Agrobacterium sp. ATCC 31749
下载PDF
导出
摘要 热凝胶是由土壤杆菌在氮源限制条件下生产的水不溶性胞外多糖。通过在线实时调节通气量建立了恒定溶氧控制策略,并将产胶期溶氧分别恒定控制在饱和溶氧浓度DO 5%、25%、50%和75%水平。然后,考察了产胶期溶氧浓度对土壤杆菌(Agrobacterium.sp.ATCC 31749)发酵过程及热凝胶流变性质的影响。结果表明,低溶氧(DO 5%)造成热凝胶生产强度显著下降,而溶氧水平高于DO 25%后,热凝胶比生成速率基本恒定。同时,热凝胶-碱溶液的流变行为符合假塑性流体特征,随着产胶期发酵时间增加,热凝胶溶液粘度迅速升高,且非牛顿流体特征逐渐显著。相同发酵时间时,适度溶氧(DO 25%)热凝胶溶液具有最大粘度,而溶氧限制(DO 5%)和高溶氧时(DO 75%)粘度均较低。控制发酵溶氧水平可以获得具有不同流变性质的热凝胶产品。 Curdlan is a water-insoluble extracellular polysaccharide produced by Agrobacterium sp. under nitrogen-limited condition. A strategy was established to maintain a constant dissolved oxygen (DO) level by real-time control of the air ventilation volume. The DO levels kept stable at 5%, 25% ,50% and 75% ,respectively,during curdlan-producing period. Afterwards,the effects of DO level on the fermentation of A. sp. ATCC 31749 and curdlan rheologieal properties were investigated. The results indicated that curdlan productivity decreased remarkably at DO 5%,whereas the curdlan specific production rate kept constant when DO level was more than 25%. Furthermore,the pseudoplastic fluid pattern was observed in curdlan-alkali solution. The viscosity of curdlan solution increased rapidly along with the fermentation time,and the non-Newtonian fluid behavior turned more obvious. At the same fermentation time,the curdlan solution reached the highest viscosity at DO 25% ,while the viscosity decreased both at DO 5% and 75%. It was concluded that curdlan products with different rheological properties can be prepared by controlling of the dissolved oxygen level.
出处 《食品与生物技术学报》 CAS CSCD 北大核心 2013年第12期1253-1260,共8页 Journal of Food Science and Biotechnology
基金 国家自然科学基金项目(31171640)
关键词 土壤杆菌 热凝胶 溶氧水平 假塑性流体 粘度 Agrobacterium sp. ATCC31749,curdlan,dissolved oxygen,pseudoplastic fluid,viscosity
  • 相关文献

参考文献31

  • 1Stone B A. Chemistry of p -glucans [M]//Bacic A. Chemistry, Biochemistry, and Biology of (1-3) -P-Glucans and RelatedPolysaccharides. Boston : Academic Press,2009 : 5-46.
  • 2Okobira T,Miyoshi K,Uezu K,et al. Molecular dynamics studies of side chain effect on the p-1 ,3-D-glucan triple helix inaqueous solution[Jl. Biomacromolecules, 2008,9(3): 783-788.
  • 3Sutherland I W, Ellwood D C. Microbial exopolysaccharide -industrial polymers of current and future potential [M]. Cambridge :Cambridge University Press, 1979.
  • 4Zhan X B ,Lin C C, Zhang H T. Recent advances in curdlan biosynthesis, biotechnological production, and applications [J].Applied Microbiology and Biotechnology, 2012,93 (2) : 525-531.
  • 5Klarzynski 0, Plesse B’Joubert J M,et al. Linear (3-1,3 glucans are elicitors of defense responses in tobacco [J]. PlantPhysiology,2000,124(3):1027-1038.
  • 6Miyanishi N,Iwamoto Y,Watanabe E,et al. Induction of TNF-a production from human peripheral blood monocytes with (3-1,3-glucan oligomer prepared from laminarin with (3-1 ,3-glucanase from Bacillus clousii NM-1[J]. Journal of Bioscience andBioengineering,2003,95(2) : 192-195.
  • 7McIntosh M,Stone B A’Stanisich V A. Curdlan and other bacterial (1—3)-卩-D-glucans[J]. Applied Microbiology andBiotechnology, 2005,68(2) : 163-173.
  • 8何国庆,李卫旗.可德兰多糖发酵的工艺条件[J].浙江大学学报(理学版),2003,30(3):319-322. 被引量:5
  • 9吴剑荣,詹晓北,刘惠,郑志永.氨水流加用于粪产碱杆菌热凝胶发酵[J].生物工程学报,2008,24(6):1035-1039. 被引量:10
  • 10Yu L, Wu J,Liu J,et al. Enhanced curdlan production in Agrobacterium sp. ATCC 31749 by addition of low -polyphosphates [J].Biotechnology and Bioprocess Engineering,2011,16(1) :34-41.

二级参考文献76

共引文献46

同被引文献17

  • 1姚敏杰,陈玉铭,朱明生.热凝胶发酵工艺研究[J].江苏食品与发酵,1995(1):20-24. 被引量:3
  • 2郑志永,詹晓北,吴剑荣,朱莉.大肠杆菌产生的聚唾液酸的结构[J].食品与生物技术学报,2005,24(5):38-41. 被引量:3
  • 3于鹏,张兰威,许倩,韩雪.亚硝基胍诱变选育丁二酮高产菌株[J].乳业科学与技术,2006,28(5):218-220. 被引量:18
  • 4吴惧,张嘉芷,张庆波,许永红,贾文华,王秋颍.β-半乳糖苷酶高产菌株的诱变筛选及其发酵培养[J].食品工业科技,1997,18(1):5-9. 被引量:13
  • 5Harada T, Masada M, Fujimori K, et al. Production of a firm, resilient gel-forming polysaccharide by a mutant of Alcaligenesfaecalis var. myxogenes 10C3[J]. Agricultural and Biological Chemistry, 1966,30(2): 196-198.
  • 6Harada T,Yoshimuka T,Hidaka H,et al. Production of a new acidic polysaccharide, succinoglucan by Alcaligenes faecalis var.myxogenes[J]. Agricultural and Biological Chemistry, 1965,29(8): 757-762.
  • 7Spicer E, Goldenthal E, Ikeda T. A toxicological assessment of curdlan[J]. Food and Chemical Toxicology, 1999, 37(4): 455-479.
  • 8Zhang H T, Zhu L, Liu D,et al. Model-based estimation of optimal dissolved oxygen profile in Agrobacterium sp. fed-batchfermentation for improvement of curdlan production under nitrogen-limited condition[J]. Biochemical Engineering Journal,2015, 103(11): 12-21.
  • 9Zheng Z Y,Jiang Y,Zhan X B,et al An increase of curdlan productivity by integration of carbon/nitrogen sources control andsequencing dual fed-batch fermentors operation[J]. Applied Biochemistry & Microbiology, 2014, 50(1): 35-42.
  • 10Yu L J,Wu J R, Zheng Z Z,et al. Changes in gene transcription and protein expression involved in the response of Agrobacteriumsp ATCC 31749 to nitrogen availability during curdlan production[J]. Prikladnaia Biokhimiia I Mikrobiologiia, 2011,47(5): 487-493.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部