期刊文献+

碳电极桥接富勒烯分子C_(36)的电子学特性研究 被引量:1

Electronics characteristics of fullerene C_(36) bridged between carbon electrodes
下载PDF
导出
摘要 以碳电极桥接富勒烯C36为研究对象,利用第一性原理的密度泛函理论B3LYP基组方法对分子桥的电子传输谱、态密度进行了理论计算,得出不同状态下的电子传输谱线和态密度。结果表明,碳电极桥接富勒烯C36器件具有良好的电子输运特性。通过计算碳电极桥接富勒烯C36纳米器件的伏安特性,发现电导随电压的变化出现了振荡现象,这一结果符合纳米器件传导量子化的原理。 For taking carbon electrode bridging fullerenes C36, molecule bridge' s electronic transport spectrum and density of states are calculated theoretically, on the base of the first-principle density functional theory B3LYP basis set method. Electronic transport spectra line and the density of states under different states are obtained, and these illustrate that carbon electrode bridging fullerene C36 devices have good electronic transport properties. Besides, Volt-ampere characteristics of the carbon electrode bridging fullerene C36 nano devices are also obtained, which presents an oscillation phenomenon of conductance along with the change of voltage. This result is coincident with the principle of nano device conduction quantization.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2013年第6期815-818,826,共5页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(61275094) 中央高校基础科研专项资金资助项目(JUSRP310) 教育部创新培养资助项目(201210295075)
关键词 密度泛函理论 富勒烯C36 态密度 电子传输 density functional theory fullerene C36 density of state electronic transport
  • 相关文献

参考文献2

二级参考文献13

  • 1[1]H.W. Kroto, J.R. Heath, S.C.O'Brien, R.F. Carl, R.E.Smalley,Nature, 1985, 318, 162.
  • 2[2]W.O.J.Boo, J.Chem.Educ.,1992, 69,605.
  • 3[3]C.Piskoti, J.Yarger, A.Zettl, Nature, 1998, 393, 771.
  • 4[4]Gaussian 98, Revision A.6, Gaussian Inc., Pittsburgh PA, 1998.
  • 5BALDONI M,SGAMELLOTTI A,MERCUHI F. Electronic properties and stability of graphene nanoribbons : an interpretation based on clar sextettheory[ J]. Chemical Physics Letters, 2008 , 464(4 -6) : 202 -207.
  • 6SAKHAEE-POUR A. Elastic properties of single-layered grapheme sheet[ J]. Solid State Communications, 2009,149(1 -2) : 91 -95.
  • 7ADAM S, DAS S S. Transport in suspended grapheme[ J]. Solid State Communications, 2008, 146(9) : 356 -360.
  • 8BOLOTIN K I,SIKES K J, KLIMA M, et al. Ultrahigh electron mobility in suspended grapheme[ J] . Solid State Communications, 2008 , 146(9): 351 -355.
  • 9XIA F N, MUELLER T, LIN Y M, et al. Ultrafast graphene photodetector[ J]. Nature Nanotechnology, 2009, 4(12) : 839 -843.
  • 10LEMME M C, MEMBER S, ECHTEHMEYER T J, et al. A graphene field-effect device[ J]. Electron Device Letters, 2007, 28(4) :282 -284.

共引文献2

同被引文献12

  • 1Kroto H W, Heath J R, O,Brien S C, et al. C60:Buckminster Fullerene [J]. Nature,1985,318(6 042): 162-163.
  • 2Konarev D V,Yudanova E I,Neretin I S,et al. Ly-ubovskaya,Synthesis and characterisation of Ceo and C70molecular complexes with metal tetraphenylporphyrinsMTPP, where M = Mn,Co, Cu, Zn,Synthetic Met-als [J]. Synth, met.,2001,121 : 1 125-1 126.
  • 3Hemandez-Rojas J,Breton J,Gomez Llorente J M,etal. Global potential energy minima of Qo (H2O) nclusters [J]. J. Phys. Chem. B,2006, 110: 13 357-13 362.
  • 4Valkova L A,Glibin A S,Valli L. Quantitative analy-sis of compression isotherms of fullerene C60 Langmuirlayers [J],Russ. Colloid J.,2008,70: 6-11.
  • 5Yang C K,Zhao J J,Lu P. Complete spin polarizationfor a carbon nanotube with an adsorbed atomic transi-tion-metal chain [J]. Nano Letters, 2004,4 (4):561-563.
  • 6Zhou M,Ding J,Guo L P,et al. Electrochemical sens-ing platform based on the highly ordered mesoporouscarbon-fullerene System [J],Anal. Chem.,2008,80:4 642-4 650.
  • 7Ansari R,Sadeghi F, Ajori S. Continuum and molecu-lar dynamics study of Qo fullerene-carbon nanotube os-cillators [J]. Mechanics Research Communication,2013, 47: 18-23.
  • 8Zagorodniy K,Hermann H, Taut M,et al. Structureanalysis and property improvements of the computer-simulated fullerene-based ultralow-k dielectrics [J].Microelectronic Engineering, 2008,85: 2 118-2 122.
  • 9Li X and Yang W. Simulating fullerene ball bearings ofultra-low friction [J]. Nanotechnology, 2007, 18:425-429.
  • 10Palacios J J,Perez-Jimenez A J, Louis E, et al. Firstprinciples phase-coherent transport in metallic nano-tubes with realistic contacts [J]. Phys. Rev. Lett,2003,90: 106 801-106 804.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部