期刊文献+

中国白酒酿造物料中分离的酵母菌株在不对称羰基还原中的应用 被引量:1

Asymmetric Ketone Reduction Using Targeted Yeast Collections Isolated from Chinese Liquor Pits
原文传递
导出
摘要 中国白酒窖的酿造物料中含有大量的细菌、酵母及霉菌菌株.为了研究其中的代表性酵母菌株在不对称羰基还原中的应用,利用5种不同的羰基化合物为底物,对保存于中国科学院成都生物研究所中国白酒酿造微生物菌种库中的部分酵母菌株进行了筛选.结果表明大多数菌株都具有羰基还原酶活力,绝大多数符合Prelog规则,其中部分菌株还具有优秀的立体选择性,在药物手性中间体合成应用中具有一定的应用潜力:例如其中拟威尔酵母属Williopsis sp.2.045在转化底物3,5-双三氟甲基苯乙酮时的转化率以及S构型产物光学纯度均高于99%;红酵母属Rhodotorula sp.2.154在转化底物N-甲基-3-羰基-3-(2-噻吩)丙酰胺时的转化率及S构型产物光学纯度达到了95%和99%.这些发现也表明白酒酿造物料中含有大量具有羰基还原酶活力的生物资源,因此中国白酒酿造微生物菌种库可作为不对称羰基还原研究中的储备酶库,直接对目标库中的菌种进行筛选能够大幅度提高菌株选择的效率. Plenty of bacteria, yeasts, molds have been found in Chinese liquor pits. In order to investigate the applications of specific yeasts on ketone reduction, we screened some yeast strains in the Yeast Library of Chinese Liquor Pits in Chengdu Institute of Biology, Chinese Academy of Sciences, using five carbonyl compounds as potential substrates. The results indicated that the majority of the strains were capable of ketone reduction, and most of them obeyed the Prelog’s rule. Some of the strains showed excellent stereo-selectivity, indicating high application potential in chiral drug intermediates production. For example, Williopsis sp. 2.045 transfered 3,5-bis(trifluoromethyl)-acetophenone into (S)-3,5-bis(trifluoromethyl)-1-phenethanol with over 99% yield and ee; Rhodotorula sp. 2.154 changed N-methyl-3-oxo-3-(thiophen-2-yl)propanamide into (S)-3-hydroxy-N-methyl-3-(thiophen-2-yl)propanamide with a yields of 95% and 99% ee. The results suggested that Chinese liquor pits contains lots of bioresources with high ketone reducing activity. It could be used as a targeted library in the screening of microbes with ketone reductase activity, which can highly improve the efficiency of strain screening.
出处 《应用与环境生物学报》 CAS CSCD 北大核心 2013年第6期1014-1019,共6页 Chinese Journal of Applied and Environmental Biology
基金 国家自然科学基金项目(21072183) 中国科学院"西部之光"基金项目资助~~
关键词 羰基还原酶 菌种筛选 酵母 手性醇 中国白酒 ketone reductase strain screening yeast chiral alcohol Chinese liquor
  • 相关文献

参考文献24

  • 1Hanson RL, Goldberg S, Goswami A, Tully TP, Patel RN. Purificationand cloning of a ketoreductase used for the preparation of chiral alcohols[J]. Adv Synth Catal 2005, 347 (7-8): 1073-1080.
  • 2Liu ZQ, Li Y, Ping LF, Xu YY, Cui FJ, Xue YP, Zheng YG. Isolation andidentification of a novel Rhodococcus sp. ML-0004 producing epoxidehydrolase and optimization of enzyme production [J].Process Biochem,2007,42 (5): 889-894.
  • 3Guo ZW, Chen YJ, Goswami A, Hanson RL, Patel RN. Synthesis of ethyland t-butyl (3/?,55)-dihydroxy-6-benzyloxy hexanoates via diastereo-and enantioselective microbial reduction. Tetrahedron: Asymmetry, 2006,17(10): 1589-1602.
  • 4Yang G, Wu JP, Xu G, Yang LR. Improvement of catalytic propertiesof lipase from Arthrobacter sp. by encapsulation in hydrophobic sol-gelmaterials [J]. Bioresour Technol, 2009, 100 (19): 4311-4316.
  • 5Wang LJ, Li CX, Ni Y, Zhang J, Liu X’ Xu JH. Highly efficient synthesisof chiral alcohols with a novel NADH-dependent reductase fromStreptomyces coelicolor [J]. Bioresour Technol, 2011, 102 (14): 7023-7028.
  • 6Ni Y, Zhou JY, Sun ZH. Production of a key chiral intermediate ofBetahistine with a newly isolated Kluyveromvces sp. in an aqueous two-phase system [J]. Process Biochem, 2012, 47 (7): 1042-1048.
  • 7Gooding OW,Voladri R, Bautista A,Hopkins T, Huisman G, Jenne S,Ma S, Mundorff EC, Savile MM. Development of a practical biocatalyticprocess for (^?)-2-methylpentanol [J]. Org Process Res Dev, 2010,14:119-126.
  • 8Liang J, Lalondc J, Borup B, Mitchell V, Mundorff E, Trinh N, KochrekarDA, Cherat RN, Pai GG. Development of a biocatalytic process as analternative to the (-)-DIP-Cl-mediated asymmetric reduction of a keyintermediate of montelukast [J]. Org Process Res Dev、2010, 14: 193-198.
  • 9Liang J, Mundorff E, Voladri R, Jenne S, Gilson L, Conway A, KrebberA.Wong J, Huisman G, Truesdell S, Lalonde J. Highly enantioselectivereduction of a small heterocyclic ketone-biocatalytic reduction oftetrahydrothiophene-3-one to the corresponding (/?)-alcohol [J]. OrgProcess Res Dev, 2010, 14: 188-192.
  • 10Li Z, Liu WD, Chen X, Jia SR, Wu QQ, Zhu DM, Ma YH. Highlyenantioselective double reduction of phenylglyoxal to (/?)-I-phenyl-l,2-ethancdiol by one NADPH-dependent yeast carbonyl reductase with abroad substrate profile [J]. Tetrahedron, 2013, 69 (17): 3561-3564.

二级参考文献35

  • 1赵东,李扬华,向双全,伍运红,王芳,兰世蓉.顶空固相微萃取气相色谱质谱法测定曲药中的香味成分[J].酿酒科技,2006(5):92-94. 被引量:52
  • 2高守海,胡文祥,恽榴红.酶催化选择性有机合成研究新进展[J].应用与环境生物学报,1996,2(4):415-423. 被引量:7
  • 3Devaux-Basseguy R,Bergel A,Comtat M.Potential application of NAD (P)-dependent oxidoreductases in synthesis:A survey.Enzyme & Microbioal Technol,1997,20:248~258
  • 4Werner H.Large-scale applications of NAD(P)-dependent oxidoreductases:recent developments.Trends Biotechnol,1999,17:487~492
  • 5Matsuyama A,Yamamoto H,Kawada N,Kobayashi Y.Industrial production of (R) -1,3-butanediol by new biocatalysts.J Mol Catalysis B:Enzymatic,2001,11:513~521
  • 6Yamamoto H,Matsuyama A,Kobayashi Y,Kawada N.Purification and characterization of (S)-1,3-butanediol dehydrogenase from Candida parapsilosis.Biosci Biotech Biochem,1995,59 (9):1769~1770
  • 7Ludwig B,Akundi A,Kendall K.A long-chain secondary alcohol dehydrogenase from Rhodococcus erythropolis ATCC4277.Appl & Environ Microbiol,1995,61 (10):3729~3733
  • 8Hummel W.Reduction of acetophenone to (R)-(+)-phenylethanol by a new alcohol dehydrogenase from Lactobacillus kefir.Appl Microbiol Biotechnol,1990,34:15~19
  • 9Schmid A,Dordick JS,Hauer B.Industrial biocatalysis today and tomorrow.Nature,2001,409 (1):258~268
  • 10Bevinakatti HS,Banerji A.Practical chemoenzymatic synthesis of both enantiomers of propranolol.J Org Chem,1991,56 (18):5372~5375

共引文献46

同被引文献22

  • 1聂映,毕小玲,尤启冬.阿瑞吡坦[J].中国新药杂志,2006,15(3):238-239. 被引量:16
  • 2Karel M. J. Brands,Joseph F. Payack , Jonathan D. Rosen,et al.Efficient Synthesis of NK1 Receptor Antagonist Aprepitant Using aCrystallization-Induced Diastereoselective Transformation [ J ] J. Am.Chem. Soc” 2003,125 (8) :2129-2135.
  • 3Naud F,Malan C,Spindler Ftet al. Ru- (Phosphine Oxazoline)complexes as efective, Industirally viable catalysts for the enantios-elective hydrogenation of aryl ketones, Advanced Synthesis Cataly-sis[j].2006,348:47-50.
  • 4Jing Q,Zhang X,Sun J,et al. Bulky achiral triayrlphos- phinesmimic BINAP in Ru (11)-catalyzed asymmetirc hydrogenation ofketones[ J ].Advanced Synthesis Catla- ysis,2005,347 : 1193-1197.
  • 5Zeror S,Collin J,Fiaud J Cfet a/.vlauation of ligands for ketone re-duction by asymmetirc hydirde transfer in water by multi-substratescerening[J ]Advanced Synthesis Catlaysis2008,350: 197-204.
  • 6Li Wei,Sun Xianfeng,Zhou Le,ei a/.Hi^ily eifcient and highlyenantioselective Asymmetric hydrogenation of ketones with tune—sphos/1,2-diamine-ruthenium( II )com- plexes [ J ].Joumla of Or-ganic Chemistry, 2009,74 : 1397-1399.
  • 7Petra H.,Thomas R., Josef A.r and Uwe T. B., Efficient resolutionof prostereogenic arylaliphatic ketones using a recombinant alcoholdehydrogenase from pseudomonasfluorescens [ J ] .Tetrah.: Asymm.,2001,(12):1207-210.
  • 8Cheng C., Ma J. H. Enantioselective synthesis of S-(-)-l-Phenythanol in Candida utilis semi-fed-bathtch culturesfjjPra Biochem.,1996,31:119-124.
  • 9Homann M J,Vail R B,Previte Etet a/.Rapid identiif. cation ofenantioselective ketone reductions using targeted microbial li—braries[j]. Tetrahedom,2004, 60:789-797.
  • 10Gelo . Pujic M,Guyader F L,Schlama T.Microbial and homogenousasymmetric catlaysis in the reduction of 1- [3,5—bis (triflu-oormethyl )_pheny 1 jethanone[ J ].Tetrahedron Asymmetyr,2006,17:2000-2005.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部