期刊文献+

采用核Rayleigh商二次相关滤波器的星图自适应杂波抑制

Star Image Adaptive Clutter Suppression Using Kernel Rayleigh Quotient Quadratic Correlation Filter
下载PDF
导出
摘要 为了实现星图中弱小星点目标的检测,提出了一种基于核Rayleigh二次相关滤波器(KRQQCF)的星图自适应杂波抑制方法.采用星图模拟方法随机产生视轴指向,根据二维高斯模型产生训练样本,提取改进的加速鲁棒特征(SURF),通过训练学习构建KRQQCF.为了快速检测目标,对待测图像首先用频域残差法检测星图中星点可能存在的显著性区域,然后提取该显著区域改进的5维SURF特征.最后,通过KRQQCF识别目标,有效抑制杂波及噪声,提高星图的信噪比.实验结果表明,该算法快速、有效、可靠. In order to detect small star point targets in star images, an adaptive clutter suppression algo- rithm based on kernel Rayleigh quotient quadratic correlation filter was proposed. The star image simula- tion method was adopted to generate optical axis point randomly, produce training samples according to the two-dimensional Gaussian model, extract improved speed-up robust features(SURF), and learn to build kernel Rayleigh quotient quadratic correlation filter(KRQQCF). In order to detect the target quickly, for the image to be detected, the spectral residual method was used to detect salient regions probably contai- ning targets. Then the improved 5 dimension SURF feature of the salient regions was extracted. Finally, the target was recognized using KRQQCF, and the clutter and noise were suppressed effectively which im- proved the SNR. Experimental results indicate that the proposed algorithm is fast, effective and robust.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2013年第12期1828-1835,共8页 Journal of Shanghai Jiaotong University
基金 国家高技术研究发展计划(863)资助项目(2006AA703405F)
关键词 星图模拟 加速鲁棒特征 核Rayleigh商二次相关滤波器 显著性 star image simulation speed-up robust feature (SURF) kernel Rayleigh quotient quadratic correlation filter (KRQQCF) saliency
  • 相关文献

参考文献14

二级参考文献47

共引文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部