期刊文献+

区分标签类型的社会化标签质量测评研究 被引量:17

Quality Evaluation of Social Tagging Based on the Type of Tags
原文传递
导出
摘要 认为社会化标签多采取自由标引方式,部分标签并不能有效地揭示资源的内容或主题,于是产生许多低质量的标签,这些低质量标签干扰社会标注系统中资源组织的秩序,降低标签在应用场合中的质量和用户满意度。进行基于标签类型的社会化标签质量测评研究,开发标签质量测评网站,邀请志愿者在该网站上对博文标签、图书标签、图片标签、视频标签、音乐标签类型进行划分,得到标签类型分类用的训练数据集和测试集;同时,对标签质量进行打分,在此基础上进一步得到标签质量评估的训练数据集与测试数据集,为以后基于标签类型的标签质量评估提供数据支持。 Most social tags take a free indexing way, and part of the tags cant reveal the content or subject matter of the resources. Therefore, a lot of low - quality tags generated to interfere the order of the social tagging system resource organizations, and to reduce the tags" quality in the application and customer satisfaction. This study carried a quality evaluation of social tagging based on the type of tags and developed a label quality evaluation site. On the one hand, volunteers divide the type of blog tags, book tags, picture tags, video tags, and music tags on the site and collect the training data set and test set of tags types. On the other hand, volunteers rate tags and collect training data set and test data set of label quality assessment, in order to provide data to support future research based on tag type label quality assessment.
出处 《图书情报工作》 CSSCI 北大核心 2013年第23期11-16,9,共7页 Library and Information Service
基金 教育部人文社会科学基金规划项目"多语言高质量社会化标签生成及聚类研究"(项目编号:13YJA870020)研究成果之一
关键词 社会化标签 标签类型 标签质量 质量测评 social tags the type of tags the quality of tags quality evaluation
  • 相关文献

参考文献29

  • 1Anusua T, Piyush R, Hal D, et al. Leveraging social bookmarks from partially tagged corpus for improved webpage clustering [ J ]. ACM Transactions on Intelligent Systems and Technology, 2011, 2 (3): 111-130.
  • 2Zubiaga A, Martinez R, Fresno V. Getting the most out of social annotations for Web page classification [ C ] //Proceedings of the 9th ACM symposium on Document engineering. Germany: ACM,2009:74 -83.
  • 3Zhou Ding, Bian Jiang, Zheng Shuyi, et al. Exploring social annotations for information retrieval [ C ] // Proceedings of the 17th International World Wide Web Conference. Beijing: 2008: 715 -724.
  • 4Zhao Shiwan, Du Nan, Nauerz A. et al. Improved recommendation based on collaborative tagging behaviors [ C ]//Proceedings of the 13th International Conference on Intelligent User Interfaces. Gran Canaria: ACM, 2008:413-416.
  • 5Goh D H, Chua A, Lee C S, et al. Resource discovery through social tagging: A classification and content analytic approach[J]. Online Information Review, 2009, 33 (3) : 568 - 583.
  • 6Gu Xiwu, Wang Xianbing, Li Ruixuan, et al. Measuring social tag confidence: Is it a good or bad tag? [ J ]. Web - Age Information Management Lecture Notes in Computer Science, 2011,6897 : 94 - 105.
  • 7Lee S E, Han S S K. Qtag: Introducing the qualitative tagging system [ C - //Proceedings of the Eighteenth Conference on Hypertext and Hypermedia. New York : ACM, 2007 : 35 - 36.
  • 8Sen S, Harper F M, LaPitz A, et al. The quest for quality tags [ C] //Proceedings of the 2007 International ACM Conference on Supporting Group Work. New York : ACM, 2007:361 -370.
  • 9Zhang S, Farooq U, Carroll J M. Enhancing information scent: Identifying and recommending quality tags [ C ] //Proceedings of the ACM 2009 International Conference on Supporting Group Work. New York : ACM, 2009: 1-10.
  • 10Belem F M, Martins E F, Almeida J M, et al. Exploiting co - occurrence and information quality metrics to recommend tags in web 2.0 applications [ C ] //Proceedings of the 19th ACM International Conference on Information and Knowledge Management. New York : ACM, 2010: 1793- 1796.

二级参考文献15

  • 1马然,向林燕.网络信息分类法的新亮点——Folksonomy[J].中国索引,2006,4(2):32-34. 被引量:13
  • 2余金香.Folksonomy及其国外研究进展[J].图书情报工作,2007,51(7):38-40. 被引量:40
  • 3BROADLY. Social spam definition [ EB/OL ]. (2008- 7- 21 ). http ://www. bryanehen.com/2008/07/21/soeial-spam/.
  • 4KIM C J, HWANG K B. Naive Bayes classier learning with feature selection for spam detection in social bookmarking [ C ]//Lecture Notes in Computer Science. Berlin : Springer-Verlag,2008.
  • 5GRAMME P, CHEVALIER J F. Rank for spam detection[ C]//Lecture Notes in Computer Science. Berlin: Springer-Verlag,2008.
  • 6MADKOUR A, HEFNI T, HEFNY A, et al. Using semantic features to detect spamming in social bookmarking systems [ C ]//Lecture Notes in Computer Science. Berlin : Springer-Verlag,2008.
  • 7VAPNIK V N. The nature of statistical learning theory[ M ]. 2nd ed. New York : Springer-Verlag, 1995 : 30- 90.
  • 8CORTES C, VAPNIK V N. Support vector networks [ J]. Machine Learning, 1995,20 ( 3 ) :272-297.
  • 9邓乃阳,田英杰.数据挖掘中的新方法-支持向量机[M].北京:科学出版社,2004.
  • 10HOTHO A, JASCHKE R, SCHMITZ C, et al. Emergent semantics in BibSonomy[M]. Liskowsky:GI Jahrestagung,2006:305-312.

共引文献12

同被引文献306

引证文献17

二级引证文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部