期刊文献+

社会媒体用户标签的分析与推荐 被引量:12

Analysis and Recommendation of Social Media User Tags
原文传递
导出
摘要 微博是Web2.0时代重要的网络服务工具,作为以用户为中心的信息发布、传播和分享平台,它包含了非常丰富的用户信息。在微博中,可以使用标签表示用户的兴趣和属性。而一个用户的兴趣和属性,通常包含在这个用户的文本信息和网络信息中。针对微博用户的标签进行分析,提出网络正则化的标签分发模型(NTDM)来为用户推荐标签。NTDM模型对用户个人简介中的词语和标签之间的关系进行建模,同时利用其社交网络结构作为模型的正则化因子。在真实数据集上的实验表明,NTDM在效果以及效率上都优于其他方法。 Microblog is an important online service in Web 2.0. As a platform for web users to post messages, communicate and share information, microblog contains rich information of users. Microblog services can use tags to represent interests and attributes of users. Meanwhile, the interests and attributes of a microblog user also hide behind his/her text and network information. In this paper, we quantitatively analyze user tags and propose a network- regularized tag dispatch model for user tag recommendation. NTDM models the semantic relations between words in user descriptions and tags, with social network structure as its regularization factor. Experiment results in a real world dataset show its effectiveness compared to other baseline methods.
出处 《图书情报工作》 CSSCI 北大核心 2013年第23期24-30,35,共8页 Library and Information Service
基金 国家自然科学基金(NSFC)的支持下完成的 授权号为61170196和61202140
关键词 用户标签推荐 微博 标签分发模型 随机游走 user tags recommendation microblog tag dispatch model random walk
  • 相关文献

参考文献25

  • 1Java A, Song Xiaodan, Finin T, et al. Why we Twitter: Understanding microblogging usage and communities [ C ]// Proceedings of the 9th WebKDD and 1st SNA - KDD 2007 Workshop on Web Mining and Social Netwm'k Analysis. New York : ACM ,2007:56 - 65.
  • 2Iwata T, Yamada T, Ueda N. Modeling social annotation data with content relevance using a topic model [C]//Advances in Neural Infonnation Processing Systems. New York :ACM, 2009:835 - 843.
  • 3Jaschke R, Marinho L, Ho/ho A, et al. Tag recommendations in social bookmarking systems [J]. Ai Communications, 2008, 21 (4) :231 -247.
  • 4Liu Zhiyuan, Chen Xinxiong, Sun Maosong. A simple word trigger method for social tag suggestion [C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2011 : 1577 - 1588.
  • 5Rendle S, Marinho L B, Nanopoulos A, et al. Learning optimal ranking with tensor factorization for tag recommendation [ C ]// Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2009 : 727 - 736.
  • 6Si Xiance, Liu Zhiyuan, Sun Maosong. Modeling social annotations via latent reason identification[ J]. IEEE Intelligent Systems, 2010, 25 (6) :42 - 49.
  • 7Resnick P,Varian H R. Recommender systems [J]. Communications of the ACM, 1997, 40(3):56-58.
  • 8Garg N, Weber I. Personalized, interactive tag recommendation for flickr [C]//Proceedings of the 2008 ACM Conference on Recommender Systems. New York : ACM, 2008:65-74.
  • 9Li Xirong, Snoek C G, Worring M. Learning social tag relevance by neighbor voting[J]. Multimedia, IEEE Transactions on, 2009, 11(7) :1310 - 1322.
  • 10Blei D M, Ng A Y, Jordan M I. Latent Dirichlet Allocation [ J ]. The Journal of Machine Learning Research, 2003 (3) :993 - 1022.

同被引文献248

  • 1王波,唐常杰,段磊,尹佳,左劼,李川.RT-Rank:基于RSS标签排名相关性的文档聚类[J].计算机研究与发展,2007,44(z3):125-130. 被引量:2
  • 2李书宁.互联网信息环境中信息超载问题研究[J].情报科学,2005,23(10):1587-1590. 被引量:23
  • 3索红光,刘玉树,曹淑英.一种基于词汇链的关键词抽取方法[J].中文信息学报,2006,20(6):25-30. 被引量:88
  • 4卜小蝶.浅谈社会性标记之意涵与应用[EB/OL].[2007-08-15].http://www.1ib.tku.edu.tw/libintro/pub/web20&lib_semina/social.tag_ft.pdf.
  • 5Vander Wal T. Folksonomy coinage and definition [ EB/OL ]. [ 2014 - 05 - 06 ]. http ://vanderwal. net/folksonomy, html.
  • 6Smith G. Tagging: People-powered metadata for the social Web [ M ]. Berkeley: New Riders, 2008.
  • 7Golder S A, Huberman B A. The structure of collaborative tagging systems[J]. Journal of Information Science, 2006, 32 (2) :198 - 208.
  • 8Sen S, I.am S K, Rashid A M, et al. Tagging, communities, vo- cabulary, evolution [ C ]//Proceedings of the 20th AnniversaryConference on Computer Supported Cooperative Work. New York: ACM, 2006 : 181 - 190.
  • 9Gupta M, Li Ri, Yin Zhijun, et al. Survey on social tagging tech- niques [ J ]. ACM SIGKDD Explorations Newsletter, 2010,12 ( 1 ) : 58 - 72.
  • 10Marlow C, Naaman M, Boyd D, et al. HT06, tagging paper, tax- onomy, Flickr, academic article, to read [ C ]//Proceedings of the 17th Conference on Hypertext and hypermedia. New York: ACM, 2006:31 -40.

引证文献12

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部