期刊文献+

基于网络舆情支持向量机的股票价格预测研究 被引量:11

Stock Price Prediction Base on Network Public Opinion and Support Vector Machine
原文传递
导出
摘要 提出一种基于网络舆情和股票技术指标数据的支持向量机回归模型(NPOSVM),提高了股票价格的预测精度.模型首先将抓取的微博、股吧等股评观点分为正面和负面两类,计算正面观点所占的比例作为网络舆情,然后对网络舆情和股票技术指标数据作主成分分析,最后对保留的主成分运用支持向量机回归建模预测.实证分析国药股份(SH600511),仿真结果表明网络舆情与股票价格之间的相关系数为0.76;基于股票技术指标数据的支持向量机回归模型(TI-SVM)预测平均相对误差为1.29%、趋势准确率为57.14%,而NPO-SVM预测平均相对误差为0.66%、趋势准确率为71.43%.于是证明,NPO-SVM模型显著地提高了预测精度,是一种有效的预测股票价格的模型. In order to improve the prediction accuracy of the stock price, based on network public opinion and technical indicators, a stock prediction model (NPO-SVM) is put forward by support vector machine regression. Firstly, stock comments such as micro-blog and stock forum are divided into both positive and negative categories, and stock network public opinion is defined by the ratio of positive comments. Then, the input data of stock network public opinion and technical indicators are reduced to several factors by the principal component analysis. Finally, the model is built with the reserved factors by support vector machine regression. The NPO-SVM is tested with China National Medicines Corporation (SH600511), and the simulation results show that, the correlation coefficient between stock network public opinion and stock price is 0.76, the average relative error of stock prediction model (TI-SVM) based on technical indicators is 1.29% and the trend accuracy rate is 57.14%, while the average relative error of NPO-SVM is 0.66% and the trend accuracy rate is 71.43%. Therefore the NPO-SVM can improve the accuracy of the prediction and is a higher efficient stock prediction model.
出处 《数学的实践与认识》 CSCD 北大核心 2013年第24期33-40,共8页 Mathematics in Practice and Theory
基金 黑龙江省教育厅科学技术研究项目(12521479) 国家自然科学基金(60973157)
关键词 网络舆情 支持向量机 股票价格 预测 network public opinion support vector machine stock price prediction
  • 相关文献

参考文献12

  • 1陈懿冰,张玲玲,聂广礼,石勇.基于改进的支持向量回归机的金融时序预测[J].数学的实践与认识,2012,24(4):38-44. 被引量:10
  • 2Lu C J,T S,Lee,C C.Chiu. Financial time series forecasting using independent component analysis and support vector regression[J].{H}Decision Support Systems,2009,(02):115-125.
  • 3Vapnik V N. The Nature of Statistical Learning Theory[M].{H}New York:Springer-Verlag,1995.1-314.
  • 4Kim K J. Financial time series forecasting using support vector machines[J].{H}NEUROCOMPUTING,2003,(1-2):307-319.
  • 5Sui X S,Hu Q H,Yu D R. Rough sets,fuzzy sets,data mining and granular computing[M].{H}New York:Springer-Verlag,2007.387-394.
  • 6Lu C J,Lee T S,Chiu C C. Financial time series forecasting using independent component analysis and support vector regression[J].{H}Decision Support Systems,2009,(02):115-125.
  • 7Huang C F. A hybrid stock selection model using genetic algorithms and support vector regression[J].{H}Applied Soft Computing Journal,2012,(02):807-818.
  • 8Gruhl D R,Guha R Kumar. Kdd '05 Proceedings of the Eleventh acr Sigkdd International Conference on Knowledge Discovery in Data Mining Table of Contents[M].New York:Association for Computing Machinery,2005.78-87.
  • 9Mishne G,N.Glance. Predicting Movie sales From blogger Sentiment[A].2006.
  • 10Schumaker R P,H.Chen. Textual analysis of stock market prediction using breaking financial news[J].{H}ACM TRANSACTIONS ON INFORMATION SYSTEMS,2009,(02):1-19.

二级参考文献12

  • 1陈春锋,陈伟忠.积极指数化:一种全新的投资模式[J].证券市场导报,2004(11):16-21. 被引量:5
  • 2张鹏,瞿宝忠.关键因素拟合指数化投资方法的实证研究[J].证券市场导报,2004(11):22-28. 被引量:3
  • 3成思危.虚拟经济探微[J].管理评论,2005,17(1):3-8. 被引量:45
  • 4Haykin. Neural Networks: A Comprehensive Foundation[M]. Prentice-Hall, 1999.
  • 5Vapnik. the Nature of Statistical Learning Theory[M]. Springer-Verlag, 1995.
  • 6Refenes A N, Bentz Y. et al. Financial Time Series Modeling with Discounted Least Squares Back-propagation[J]. Neurocomputing, 1997, 14: 123-138.
  • 7Zhang L, et al. Foundation of intelligent knowledeg management[J]. Human System Management, 2009, 28(4): 145-161.
  • 8Shi Y, et al. Optimization based Data Mining: Theory and Application[M]. Springer, 2011.
  • 9Vapnik VN.The Nature of Statistical Learning Theory[]..1995
  • 10Corielli F,Marcellino M.Factor Based Index Tracking[]..2002

共引文献9

同被引文献168

引证文献11

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部