摘要
设L(R^n)表示n维欧氏空间R^n的所有线性变换构成的集合,||α||表示向量α的欧氏长度,由欧氏长度建立起向量间的序关系.令:O+(R^n)={f∈L(R^n)|(?)α∈R^n,||f(α)||≥||α||},则O+(R^n)是欧氏空间R^n的所有升序变换构成的集合,其在交换的合成运算下构成一个半群,讨论了O+(R^n)的格林关系和正则元.
Let L(R^n) be the set consisting of all linear transformations on n-dimensional Euclidean space R^n. Let ||α|| be the Euclidean length of vector α.According to the Euclid length of the vector, set up the order relation about the vector. Let O+(R^n)={f∈L(R^n)}Vα∈R^n,||f(a)||≥||α||) be the set consisting of order-increasing transformation on Euclidean space Rn. Then O+(Rn) is a semigroup under matrix operation. In this paper, we discuss Green's relations and regularity of elements for O+(Rn).
出处
《数学的实践与认识》
CSCD
北大核心
2013年第24期198-201,共4页
Mathematics in Practice and Theory
基金
贵州师范大学博士科研基金(2013)
贵州省科学技术基金(黔科合丁字LKS[2013]02号)
关键词
变换
升序
欧氏长度
矩阵
transformation
order-increasing
euclidean length
matrix