期刊文献+

欧氏空间中升序变换半群的格林关系和正则元 被引量:2

Green's Relations and Regularity for Semigroups of Order-Increasing Transformations on Euclidean Space
原文传递
导出
摘要 设L(R^n)表示n维欧氏空间R^n的所有线性变换构成的集合,||α||表示向量α的欧氏长度,由欧氏长度建立起向量间的序关系.令:O+(R^n)={f∈L(R^n)|(?)α∈R^n,||f(α)||≥||α||},则O+(R^n)是欧氏空间R^n的所有升序变换构成的集合,其在交换的合成运算下构成一个半群,讨论了O+(R^n)的格林关系和正则元. Let L(R^n) be the set consisting of all linear transformations on n-dimensional Euclidean space R^n. Let ||α|| be the Euclidean length of vector α.According to the Euclid length of the vector, set up the order relation about the vector. Let O+(R^n)={f∈L(R^n)}Vα∈R^n,||f(a)||≥||α||) be the set consisting of order-increasing transformation on Euclidean space Rn. Then O+(Rn) is a semigroup under matrix operation. In this paper, we discuss Green's relations and regularity of elements for O+(Rn).
出处 《数学的实践与认识》 CSCD 北大核心 2013年第24期198-201,共4页 Mathematics in Practice and Theory
基金 贵州师范大学博士科研基金(2013) 贵州省科学技术基金(黔科合丁字LKS[2013]02号)
关键词 变换 升序 欧氏长度 矩阵 transformation order-increasing euclidean length matrix
  • 相关文献

参考文献6

  • 1Umar A. On certain infinite semigroups of order-increasing transformations Ⅱ[J]. Arabian Journal For Science And Engineering, 2003 (28): 203-210.
  • 2Umar A. On the semigroups of order-decreasing finite full transformations[J]. Royal Society of Edinburgh, 1992, 120A: 129-142.
  • 3Umar.A, On the semigroups of partial one-to-one order-decresing finite transformations[J].Proceedings of The Royal Society of Edinburgh Section A-mathematics, 1993 (123): 355-363.
  • 4Umar.A, Semigroups of order-decreasing transformations: The isomorphism theorem[J]. Semigroup Forum, 1996(53): 220-224.
  • 5Umar.A, On certain infinite semigroups of order-decreasing transformations l[J]. Communications In Algebra, 1997(25): 2987-2999.
  • 6Laradji.A, Umar.A, On certain finite semigroups of order-decreasing transformations I[J]. Semigroup Forum, 2004(69): 184-200.

同被引文献20

  • 1PEI Huisheng, ZOU Dingyu. Green's equivalences on semigroups of transformations preserving order and an equivalence [J]. Semigroup Forum, 2005, 71(2): 241-251.
  • 2PEI Huisheng, SUN Lei, ZHAI Hongcun. Green's relations for the variants of transformation semigroups pre- serving an equivalence relation [J]. Comm Algebra, 2007, 35(6): 1971-1986.
  • 3SUN Lei, PEI huisheng, Cheng Zhengxing. Regularity and Green's relations for semigroups of transformations preserving orientation and an equivalenees [J]. Semigroup Forum, 2007, 74(3)= 473-486.
  • 4DENG Lunzhi, ZENG Jiwen, XU Bo. Green's relations and regularity for semigroups of transformations that preserve double direction equivalence [J]. Semigroup Forum, 2010, 80(3): 416-425.
  • 5DENG Lunzhi, ZENG Jiewen, YOU Taijie. Green's relations and regularity for semigroups of transformations that preserve reverse direction equivalence [J]. Semigroup Forum, 2011, 83(3): 489-498.
  • 6DENG Lunzhi, ZENG Jiewen, YOU Taijie. Green's relations and regularity for semigroups of transformations that preserve order and a double direction equivalence [J]. Semigroup Forum, 2011, 84(1)= 59-68.
  • 7ZHAO Ping, YANG Mei. Regularity and Green's relations on semigroups of transformation preserving order and compression [J]. Bull Korean Math Soc, 2012, 49(5) : 1015-1025.
  • 8SANGKHANAN K, SANWONG J. Green's relations and partial orders on semigroups of partial linear trans- formations with restricted range [J]. Thai J Math, 2014, 12(1) 81-93.
  • 9HOWIE J M. Fundamentals of semigroup theory [M]. Oxford: The Clarendon Press, 1995: 1-349.
  • 10裴惠生,周会娟.保持一个等价关系的部分变换半群(英文)[J].数学进展,2009,38(1):103-116. 被引量:13

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部