期刊文献+

一类高阶矩阵差分方程的解及渐近稳定性

The Solutions of a Class of High-order Matrix Difference Equations and Its Asymptotic Stability
原文传递
导出
摘要 讨论了一类高阶矩阵差分方程的解及渐近稳定性问题.利用特征子空间的维数得到了特征方程存在可对角化解的一个充要条件;然后利用特征方程的相异解刻划出该矩阵差分方程的通解,并给出其解渐近稳定的两个充分条件.推广了相关文献的结果. This paper is focused on the problem of the solutions of a class of high-order matrix difference equations and its asymptotic stability. By using dimensions of the eigen- subspaces, the necessary and sufficient conditions for the existence diagonalizable solutions of characteristic equation is obtained. Next, apply different solutions of characteristic equation, the general solution of the matrix difference equations is described. Meanwhile, two sufficient conditions its on asymptotic stability of the solution are given. The results extend some known conclusions in related literature.
出处 《数学的实践与认识》 CSCD 北大核心 2013年第24期258-262,共5页 Mathematics in Practice and Theory
基金 广西高校科研项目(2013YB076) 广西民族大学重点学科建设项目(2012SX)
关键词 矩阵差分方程 特征方程 通解 渐近稳定 matrix difference equations characteristic equation general solution general solution asymptotic stability
  • 相关文献

参考文献7

  • 1冯果忱.解常微分方程边值问题的差分法[J].吉林大学自然科学学报,1962,(1):83-93.
  • 2王慕秋,王联.离散动力系统的稳定性[J].数学季刊,1987,2(3):12-30.
  • 3Linshan Wang. Equistability of the Matrix Differential Equations[J]. Ann Diff Eqs, 1998,(14): 313-319.
  • 4阮炯.差分方程和常微分方程[M].上海:复旦大学出版社,2003.
  • 5黄敬频,黄杭州.二阶线性矩阵差分方程的解及渐近稳定性[J].数学的实践与认识,2009,39(12):250-254. 被引量:1
  • 6Horn R A, Johnson C R. Matrix Analysis[M]. Cambridge University Press, Cambridge, 1985.
  • 7Farmer M R, Loizou G. Locating multiple zeros interactively[J]. Comput Math Appl, 1985(11): 595-603.

二级参考文献5

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部