期刊文献+

融合视觉感知和正则割的二维阈值分割算法

TWO DIMENSIONAL THRESHOLD SEGMENTATION BASED ON VISUAL PERCEPTION AND NCUT
下载PDF
导出
摘要 阈值法是图像分割的一种重要方法,其关键是如何确定阈值。提出一种融合视觉感知和正则割的二维阈值分割方法,该方法首先利用视觉感知的特性选择候选阈值向量所在的灰度区域,再将正则割作为准则,从候选阈值向量中选出最佳的分割阈值向量。在一系列图像上的实验结果表明,与几种经典的阈值分割方法相比,所提方法的分割效果更好。 Thresholding is an important means of image segmentation, its key is how to determine the threshold value. In this paper, we present a two-dimensional threshold segmentation method which fuses the visual perception and Ncut. The proposed method first utilises the characteristic of visual perception to select the grayscale region where has the candidate threshold vectors, then it uses Ncut as the criterion to determine the optimal segmentation threshold vector from candidate threshold vectors. The experimental results on a series of image show that the proposed method outperforms some classic thresholding methods in segmentation effect.
出处 《计算机应用与软件》 CSCD 北大核心 2013年第12期73-76,189,共5页 Computer Applications and Software
基金 国家自然科学基金项目(60975083 61272338)
关键词 图像阈值分割 正则割 阈值向量选择 视觉感知 Image threshold segmentation Ncut Threshold vector Selection Visual perception
  • 相关文献

参考文献14

  • 1吴一全,樊军,周怀春.改进的二维最小交叉熵阈值分割快速迭代算法[J].应用科学学报,2011,29(5):487-494. 被引量:5
  • 2Abutaleb A. Automatic thresholding of gray-level pictures using two-di- mensional entropy [ J ]. Computer Vision, Graphics, and Image Pro- cessing, 1989, 47( 1 ) : 22 -32.
  • 3刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105. 被引量:357
  • 4Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evalution [ J ]. Journal of Electronic Imaging, 2004, 13(1): 146-165.
  • 5Tao W, Jin H, Zhang Y. Image Thresholding Using Graph Cuts [ J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A, 2008, 38(5) :1181 - 1195.
  • 6陶文兵,金海.一种新的基于图谱理论的图像阈值分割方法[J].计算机学报,2007,30(1):110-119. 被引量:58
  • 7Shi J, Malik J. Normalized Cuts and Image Segmentation [ J ]. IEEE Tran-sactions on Pattern Analysis Machine Intelligence, 2000,22 (8) : 888 - 905.
  • 8Grady L, Schwartz E L. Isoperimetric graph partitioning for image seg- mentation[ J]. IEEE Transactions on Pattern Analysis and Machine In- telligence, 2006,28 ( 3 ) :469 - 475.
  • 9吴锐,黄剑华,唐降龙,刘家锋.基于灰度直方图和谱聚类的文本图像二值化方法[J].电子与信息学报,2009,31(10):2460-2464. 被引量:28
  • 10Arora S, Acharya J, Verma A, et al. Multilevel thresholding for image segmentation through a fast statistical recursive algorithm[J]. Pattern- Recognition Letters, 2008,29 ( 2 ) : 119 - 125.

二级参考文献55

  • 1刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105. 被引量:357
  • 2陶文兵,金海.一种新的基于图谱理论的图像阈值分割方法[J].计算机学报,2007,30(1):110-119. 被引量:58
  • 3Lienhart R. and Wernicke A. Localizing and segmenting text in images and videos. IEEE Transactions on Circuits and Systems for Video Technology, 2002, 12(4): 256-268.
  • 4Mariano V Y and Kasturi R. Locating uniform-colored text in video frames. Proc. of Int'l Conference on Pattern Recognition, Barcelona, Spain, 2000, 4: 539-542.
  • 5Chen D, Odobez J M, and Bourlard H. Text detection and recognition in images and video frames. Pattern Recognition, 2004, 37(3): 595-608.
  • 6Zhong Yu, Zhang Hong-jiang, and Jain A K. Automatic caption localization in compressed video. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(4): 385-392.
  • 7Chen Xi-lin, Yang Jie, Zhang Jing, and Waibel A. Automatic detection and recognition of signs from natural scenes. IEEE Transactions on Image Processing, 2004, 13(1): 87-99.
  • 8Chen Xiang-rong and Yuille A L. Detecting and reading text in natural scenes. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 2004: 366-373.
  • 9Tsal T H and Chen Y C. A comprehensive motion videotext detection localization and extraction method. Proc. of IEEE Int'l Conference on Data Engineering Workshop, Istanbul, Turkey, 2007: 113-116.
  • 10Pan W M, Bui T D, and Suen CY. Text segmentation from complex background using sparse representations. Proc.of Int'l Conference on Document Analysis Recognition, Curitiba Brazil, 2007: 412-416.

共引文献523

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部