摘要
提出一种基于云变异操作的量子行为粒子群优化算法(QPSO-CM)的径向基函数神经网络(RBFNN)学习方法。首先QPSO算法利用云模型加入云变异操作,增加算法多样性;然后利用减聚类算法确定RBF神经网络径向基层的单元数;最后用QPSO-CM算法对RBF神经网络的参数(中心与宽度)和连接权重进行优化。将此算法用于齿轮的故障诊断,仿真诊断结果表明此方法是有效的,具有较好的分类效果,诊断精度高、收敛速度快。
In this paper we introduce a learning method of radial basis function (RBF) neural network which is based on quantum-behaved particle swarm optimisation with cloud mutation operation (QPSO-CM). First, the QPSO adds the cloud mutation operation by using cloud model to increase its diversity; then the method uses the subtractive clustering method to determine the unit number of radial basis layer in RBF neural network; finally, it optimises the parameters (central position and directional width) of RBF neural network and the connection weight by QPSO-CM. Applying the method to gear faults diagnosis, the simulation results show that this method is effective with high diagnosis accuracy and fast convergence.
出处
《计算机应用与软件》
CSCD
北大核心
2013年第12期77-80,92,共5页
Computer Applications and Software
基金
国家自然科学基金项目(61170119)
江苏省博士后科研资助项目(1101124C)
关键词
云模型
量子行为粒子群算法
径向基函数神经网络
故障诊断
Cloud model Quantum-behaved particle swarm optimisation Radial basis function neural network Faults diagnosis