期刊文献+

一种结合云模型和QPSO优化的RBFNN及其应用 被引量:1

A RBF NEURAL NETWORK COMBINING CLOUD MODEL AND QPSO AND ITS APPLICATION
下载PDF
导出
摘要 提出一种基于云变异操作的量子行为粒子群优化算法(QPSO-CM)的径向基函数神经网络(RBFNN)学习方法。首先QPSO算法利用云模型加入云变异操作,增加算法多样性;然后利用减聚类算法确定RBF神经网络径向基层的单元数;最后用QPSO-CM算法对RBF神经网络的参数(中心与宽度)和连接权重进行优化。将此算法用于齿轮的故障诊断,仿真诊断结果表明此方法是有效的,具有较好的分类效果,诊断精度高、收敛速度快。 In this paper we introduce a learning method of radial basis function (RBF) neural network which is based on quantum-behaved particle swarm optimisation with cloud mutation operation (QPSO-CM). First, the QPSO adds the cloud mutation operation by using cloud model to increase its diversity; then the method uses the subtractive clustering method to determine the unit number of radial basis layer in RBF neural network; finally, it optimises the parameters (central position and directional width) of RBF neural network and the connection weight by QPSO-CM. Applying the method to gear faults diagnosis, the simulation results show that this method is effective with high diagnosis accuracy and fast convergence.
出处 《计算机应用与软件》 CSCD 北大核心 2013年第12期77-80,92,共5页 Computer Applications and Software
基金 国家自然科学基金项目(61170119) 江苏省博士后科研资助项目(1101124C)
关键词 云模型 量子行为粒子群算法 径向基函数神经网络 故障诊断 Cloud model Quantum-behaved particle swarm optimisation Radial basis function neural network Faults diagnosis
  • 相关文献

参考文献12

  • 1Tan Shaohua, Hao Jianbin ,Joos V. Efficient identification of RBF neu- ral net models for nonlinear discrete-time multivariable dynamical sys- tems[J]. Neurocomputing, 1995, 9(1) :11 -26.
  • 2任静,黄家栋.基于免疫RBF神经网络的变压器故障诊断[J].电力系统保护与控制,2010,38(11):6-9. 被引量:42
  • 3吝伶艳,田慕琴,吕永卫.基于遗传算法和神经网络相融合的异步电动机故障建模[J].煤矿机械,2007,28(8):211-213. 被引量:2
  • 4Kennedy J, Eberhart R C. Particle Swarm Optimization[ C ]//Proceed- ings of the IEEE International Joint Conference on Neural Networks, 1995, 4 : 1942 - 1948.
  • 5Van den Bergh F. An Analysis of Particle Swarm Optimizers[ D]. Uni- versity of Pretoria, Nov,2001.
  • 6Sun J, Xu W B. A Global Search Strategy of Quantum-behaved Particle Swarm Optimization [ C ]//Proceedings of IEEE conference on Cyber- netics and Intelligent Systems ,2004 : 111 - 116.
  • 7Sun J, Feng B, Xu W B. Particle Swarm Optimization with Particles Having Quantum Behavior[ C ]//Proceedings of 2004 Congress on Evo- lutionary Computation ,2004:325 - 331.
  • 8Sun J, Wu X J, Palade V, et al. Convergence Analysis and Improve- ments of Quantum-behaved Particle Swarm Optimization [ J ]. Informa- tion Sciences,2012,193:81 - 103.
  • 9刘常昱,李德毅,杜鹢,韩旭.正态云模型的统计分析[J].信息与控制,2005,34(2):236-239. 被引量:210
  • 10刘桂花,宋承祥,刘弘.云发生器的软件实现[J].计算机应用研究,2007,24(1):46-48. 被引量:62

二级参考文献26

共引文献309

同被引文献10

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部