期刊文献+

一种基于模糊理论的蒙特卡洛移动节点定位算法 被引量:7

A MCL MOBILE NODE LOCALISATION ALGORITHM BASED ON FUZZY THEORY
下载PDF
导出
摘要 移动节点定位技术是无线传感器网络中的关键技术之一。针对蒙特卡洛算法MCL(Monte Carlo Localisation)在移动节点定位中存在样本需求量大、定位精度不高、定位所需时间长等缺点,提出基于模糊理论的改进蒙特卡洛移动节点定位算法F-MCL。通过对节点信号能量数值进行模糊化,滤波条件的精确化来弥补MCL的不足。仿真实验表明,提出的F-MCL算法比传统MCL算法在定位时间上比原来缩短了约58.6%,在定位精度上比MCL算法最高提高了约37%。 Mobile node localisation is one of crucial technologies in wireless sensor networks. Aiming at the defects of Monte Carlo local- isation (MCL) algorithm in mobile node localisation that the demand of samples amount is big, locating accuracy is low, and locating time is relatively long, we propose a new localisation algorithm F-MCL, which improves MCL mobile node localisation based on fuzzy theory. By the fuzzification of the node signal energy value and the precision of the filtering conditions we make up the deficiency of MCL. Simulation experi- ment shows that the proposed F-MCL algorithm shortens the time required for the localisation about 58.6% compared with the traditional MCL algorithm, and improves the precision of localisation about 37% than MCL.
出处 《计算机应用与软件》 CSCD 北大核心 2013年第12期147-150,共4页 Computer Applications and Software
基金 吉林省教育厅"十一五"科学技术研究项目(吉教科合字[2010]第76号) 东北电力大学研究生创新基金课题
关键词 无线传感器网络 移动节点定位 蒙特卡洛算法 模糊理论 WSN Mobile node localisation MCL Fuzzy theory
  • 相关文献

参考文献2

二级参考文献13

共引文献244

同被引文献85

  • 1张恒,樊晓平,瞿志华.基于多假设跟踪的移动机器人自适应蒙特卡罗定位研究[J].自动化学报,2007,33(9):941-946. 被引量:14
  • 2孙立民 李建中 陈渝.无线传感器网络[M].北京:清华大学出版社,2005..
  • 3Li Jian-po, Zhong Xin-xin, Lu I-tai. Three demen- sional node locatization algorithm for WSN based on differential RSS irregular transmission model [J]. Journal of Commuications,2014,9(5) :391-397.
  • 4Bulusu Nirupama, Heidemann John, Estrin Debo- rah. GPS-less low-cost outdoor localization for very small devicesJ-I. IEEE Personal Communications, 2000, 7(5) :28-34.
  • 5Doherty Lance, Pister Kristofer S J, EI-Ghaoui Laurent. Convex position estimation in wireless sensor networks[C]//Twentieth Annual Joint Con- ference of the IEEE Computer and Communications Societies, Anchorage, IEEE Press, 2001: 1655- 1663.
  • 6Savvides Andreas, Han Chih-chieh, Strivastava Ma- ni B. Dynamic fine-grained localization in Ad-Hoc networks of sensorsFC // Proceedings of the 5th Annual International Conference on Mobile Compu- ting and Networking, Rome, ACM Press, 2001:166-179.
  • 7Nagpal Radhika, Shrobe Howard, Bachrach Jona- than. Organizing a global coordinate system from lo- cal information an Ad Hoc sensor network[C]// Proceedings of Second International Workshop on Information Processing in Sensor Networks, New York : Springer-Verlag, 2003 : 333-348.
  • 8Niculescu Dragos, Nath Badri. Localized positioning in Ad Hoe networks[C]//Proceedings of the First IEEE International Workshop on Sensor Network Protocols and Applications, Anchorage: IEEE Press, 2003: 42-50.
  • 9Hu Ling-xuan, Evans David. Localization for Mo- bile sensor networks[C]//Proceedings of 10th An- nual International Conference on Mobile Computing and Networking, Philadelphia,ACM, 2004: 45-47.
  • 10Teng Guodong, Zheng Kougen, Dong Wei.MA-MCL : Mobile- Assisted Monte Carlo Localization for Wireless Sensor Networks[J].International Journal of Distributed Sensor Networks, 2011,2011.

引证文献7

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部