摘要
设f:G→G是群G的自同态,满足f(x)=xn(x∈G),证明了G是交换群当且仅当n=-1或2;设M={n|f:G→G是群G的自同态,满足f(x)=xn,x∈G},证明了G是交换群当且仅当n遍历M中所有元时,所有形如n(n-1)元的最大公因数为2.
Let f:G→G be an homomorphism of a group G, satisfying f(x) =xn(?x∈G), prove that G is commutative if and only if n=-1 or 2.Let M={n|f:G→G is homomorphism of G, satisfying f( x) =xn ,?x∈G} prove that G is com-mutative if and only if the greatest common multiples of numbers of the form of n(n-1), when n is running over the set M, is 2.
出处
《湖北师范学院学报(自然科学版)》
2013年第4期19-21,共3页
Journal of Hubei Normal University(Natural Science)