期刊文献+

基于节点分布均匀度模型的加权能量检测GAF算法 被引量:2

GAF algorithm based on node uniformity model and weighted energy detection
下载PDF
导出
摘要 在分析了传统GAF算法在选举簇头和虚拟单元格方格划分不足的基础上,提出了一种节点分布均匀度模型的加权能量检测GAF算法,在对虚拟单元格形状改进的基础上,建立节点分布均匀度模型,进一步对虚拟单元格的划分提供参考,同时对算法中簇头选举综合考虑节点剩余能量及其与虚拟单元格内物理节点的质心间距,能有效解决节点能量消耗不均衡问题。最后以GPSR作为GAF算法的底层通信协议进行仿真,结果表明该算法有效地节省了节点的能量,延长了网络的生存周期。 On the basis of analyzing shortcomings of the cluster head election and virtual cell division of traditional GAF algorithm, a GAF algorithm based on node uniformity model and weighted energy detection is proposed. On the basis of improving the shape of virtual cell, we build the node uniformity model and further provide the reference for virtual cell division. And we also consider the residual energy of the nodes and the distance between the cluster and the center of mass of nodes in virtual cell. It can solve the unbalanced energy consumption of nodes effectively. We use GPSR as the lower layer communication protocols of GAF algorithm, and the simulation results show that the improved algorithm can save the energy of the nodes effectively and prolong the network lifetime.
出处 《电子测量与仪器学报》 CSCD 2013年第12期1120-1126,共7页 Journal of Electronic Measurement and Instrumentation
基金 广东省教育部产学研结合(2011B090400524) 安徽省高校省级自然科学研究重点(KJ2012A233) 中国科学院上海微系统与信息技术研究所无线传感网与通信重点实验室开放课题(2013003) 合肥工业大学国家级大学生创新基金(201210359018)资助项目
关键词 分簇算法 分布均匀度 GAF算法 能量检测 clustering algorithm node uniformity GAF algorithm energy detection
  • 相关文献

参考文献19

二级参考文献143

共引文献146

同被引文献25

  • 1GUNGOR V C, HANCKE G P. Industrial wireless sen-sor networks: Challenges, design principles, and tech-nical approaches[ J]. IEEE Transactions on IndustrialElectronics, 2009, 56(10) : 42584265.
  • 2BAL M. An industrial wireless sensor networks frame-work for production monitoring [ C ]. 2014 IEEE 23 rd In-ternational Symposium on Industrial Electronics(ISIE). IEEE, 2014: 1442-1447.
  • 3GANDHAM S,DAWANDE M,PRAKASH R. Linkscheduling in wireless sensor networks : distributededge-coloring revisited [ J ] . Journal of Parallel and Dis-tributed Computing, 2008,68(8) : 1122-1134.
  • 4CHENG C T,TSE C K, LAU F C M. An energy-awarescheduling scheme for wireless sensor networks [ J ].59(7) : 3427-3444.
  • 5ZAIRI S, ZOUARI B,NIEL E, et al. Nodes self-vscheduling approach for maximising wireless sensornetwork lifetime based on remaining energy [ J ]. IETwireless sensor systems, 2012, 2(1): 52-62.
  • 6CHENG M X,GONG X,CAI L, et al. Cross-layerthroughput optimization with power control in sensornetworks [ J],IEEE Transactions on Vehicular Technol-ogy, 2011,60(7) : 3300v3308.
  • 7SAPPIDI R, GIRARD A, ROSENBERG C. Maximum a-chievable throughput in a wireless sensor network using in-network computation for statistical functions [ J]. IEEE/ACM Transactions on Networking, 2013,21 (5):1581-1594.
  • 8CHIPARA 0, LU C, STANKOVIC J,et al. Dynamicconflict-free transmission scheduling for sensor networkqueries [ J ]. IEEE Transactions on Mobile Computing,2011, 10(5): 734-748.
  • 9CHIPARA O, LU C, ROMAN G C. Real-time queryscheduling for wireless sensor networks [ J ]. IEEETransactions on Computers, 2013,62(9) ; 1850-1865.
  • 10李建中,高宏.无线传感器网络的研究进展[J].计算机研究与发展,2008,45(1):1-15. 被引量:441

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部