期刊文献+

基于增量PCA的目标跟踪算法 被引量:2

Target Tracking Algorithm Based on the Incremental PCA
下载PDF
导出
摘要 在空间遥操作系统中为了获取良好的视觉信息使操作员有种身临其境的感觉,在基于奇异值分解的PCA算法上采用增量PCA跟踪算法,避免了提取大量图片的问题;将该算法与PTZ摄像机相结合,设计了一套基于主动视觉的目标跟踪系统。为机械臂提供灵敏的感知系统,在不接触目标的情况下将相关信息及时传递给地面操作员,便于操作员自然、有效地解决问题。在机械臂动作之前执行规划,在动作过程中不断地反馈信息,适合于对环境变化有适应性要求的作业。 In the space of Tele-Operation systems, the visual telepresence has been widely recognized. In order to obtain good visual information and make operators have immersive feeling, this paper use an incremental PCA (principal component analysis) and the singular value decomposition,and avoid extracting a lot of pictures; with the combination of the algorithm and PTZ (Pan-Tilt-Zoom) camera, we can design a set of target tracking system based on active vision for providing a sensitive perception system of manipulators, in the case of not reaching target, the relevant information is passed to the operator on the ground timely and effectively, so the operator can solve the problem naturally and effectively. The plan execution before the manipulator action, the information is feedback in the process of action constantly, so it is suitable for the task which has the adaptability to environmental change.
出处 《江南大学学报(自然科学版)》 CAS 2013年第6期647-652,共6页 Joural of Jiangnan University (Natural Science Edition) 
基金 国家自然科学基金项目(61075027) 国家863计划项目(91120011) 上海市研究生创新基金项目(JWCXSL1202)
关键词 主动视觉 PCA算法 PTZ摄像机 目标跟踪 vision telepresence, PCA algorithm,PTZ camera,target tracking
  • 相关文献

参考文献11

  • 1崔乃刚,王平,郭继峰,程兴.空间在轨服务技术发展综述[J].宇航学报,2007,28(4):805-811. 被引量:165
  • 2Gibbs G, Sachdev S. Canada and the international space station program:overview and status [ J ]. Acta Astronaut,2002,51 ( 1 ) : 591-600.
  • 3翟光,仇越,梁斌,李成.在轨捕获技术发展综述[J].机器人,2008,30(5):467-480. 被引量:40
  • 4Hokayem P F, Spong M W. Bilateral teleoperation : an historical survey [ J ]. Automatica,2006,42 ( 12 ) :2035-2057.
  • 5Perez P, Hue C, Vermaak J, et al. Color-based probabilistic tracking[ C ]//Proceedings of the 7th European Conference on Computer Vision. Copenhagen, Denmark: Springer Berlin Heidelberg,2002 : 661 - 675.
  • 6Kim Z. Real time object tracking based on dynamic feature grouping with background subtraction [ C ]//2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK : IEEE ,2008 : 1-8.
  • 7Blake A, Isard M, Reynard D. Learning to track curves in motion [ C ]//Proceedings of the IEEE Conference on Decision Theory and Control. Lake Buena Vista, FL:IEEE, 1994:3788-3793.
  • 8Black M J ,Jepson A D. Eigen tracking: robust matching and tracking of articulated objects using a view-based representation [ J ]. International Journal of Computer Vision, 1998,26 ( 1 ) : 63-84.
  • 9Ross D A, Lim J, Lin R S, et al. Incremental learning for robust visual tracking [ J ]. International Journal of Computer Vision, 2008(5) :125- 141.
  • 10Levy A, Lindenbaum M. Sequential karhunen-loeve basis extraction and its application to images [ J ]. IEEE Transactions on Image Processing, 2000 ( 9 ) : 1371 - 1374.

二级参考文献77

共引文献190

同被引文献20

  • 1金剑锋,丁琦,陆天培,杨林玉.人脸识别技术在智能客流分析领域的实践应用[J].电信科学,2020,36(S01):260-267. 被引量:5
  • 2宋怀波,史建强.应用PCA理论进行多人脸姿态估计的方法[J].吉林大学学报(工学版),2013,43(S1):43-46. 被引量:3
  • 3Chellappa M.The weakest link[C]∥International Maritime-Port Technology and Development Conference,Singapore,2011:278-282.
  • 4Yuan Y,Pang Y W,Pan J,et al.Scene segmentation based on IPCA for visual surveillance[J].Neurocomputing,2009,72(10-12):2450-2454.
  • 5刘志强,尹建芹,张玲,等.基于Kinect数据主成分分析的人体动作识别[J].光学精密工程,2015,23(10):702-711.
  • 6Zhao H T,Yuen P C,Kwork J.A novel incremental principal component analysis and its application for face recognition[J].IEEE Transactions on Systems,Man and Cybernetics,Part B(Cybernetics),2006,36(4):873-886.
  • 7李大健,齐敏,郝重阳.模式识别导论[M].北京:清华大学出版社,2009.
  • 8Oja E,Karhunen J.On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix[J].Journal of Mathematical Analysis and Applications,1985,106(1):69-84.
  • 9Sanger T D.Optimal unsupervised learning in a single-layer linear feedforward neural network[J].Neural Networks,1989,2(6):459-473.
  • 10Weng J Y,Zhang Y L,Hwang W S.Candid covariance-free incremental principal component analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(8):1034-1040.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部