摘要
Wavelet moment invariants are constructed for object recognition based on the global feature and local feature of target, which are brought for the simple background of the underwater objects, complex structure, similar form etc. These invariant features realize the multi-dimension feature extraction of local topology and in- variant transform. Considering translation and scale invariant characteristics were ignored by conventional wavelet moments, some improvements were done in this paper. The cubic B-spline wavelets which are optimally localized in space-frequency and close to the forms of Li's(or Zernike's) polynomial moments were applied for calculating the wavelet moments. To testify superiority of the wavelet moments mentioned in this paper, generalized regres- sion neural network(GRNN) was used to calculate the recognition rates based on wavelet invariant moments and conventional invariant moments respectively. Wavelet moments obtained 100% recognition rate for every object and the conventional moments obtained less classification rate. The result shows that wavelet moment has the ability to identify many types of objects and is suitable for laser image recognition.
Wavelet moment invariants are constructed for object recognition based on the global feature and local feature of target, which are brought for the simple background of the underwater objects, complex structure, similar form etc. These invariant features realize the multi-dimension feature extraction of local topology and invariant transform. Considering translation and scale invariant characteristics were ignored by conventional wavelet moments, some improvements were done in this paper. The cubic B-spline wavelets which are optimally localized in space-frequency and close to the forms of Li's (or Zernike's) polynomial moments were applied for calculating the wavelet moments. To testify superiority of the wavelet moments mentioned in this paper, generalized regression neural network (GRNN) was used to calculate the recognition rates based on wavelet invariant moments and conventional invariant moments respectively. Wavelet moments obtained 100% recognition rate for every object and the conventional moments obtained less classification rate. The result shows that wavelet moment has the ability to identify many types of objects and is suitable for laser image recognition.
基金
the Fundamental Research Funds for Central Universities(No.HEUCF110111)
the National Natural Science Foundation of China(No.51009040)
the China Postdoctoral Science Foundation(No.2012M510928)
the Heilongjiang Post-doctoral Fund(No.LBH-Z11205)
the National High Technology Research and Development Program(863)of China(No.2011AA09A106)