期刊文献+

干细胞复合I型胶原修饰的PLGA微球治疗骨质疏松性骨缺损 被引量:3

Effect of polylactic acid-polyglycolic acid copolymer/collagen type I microspheres combined with BMSCs on bone de- fects in osteoporotic rats
原文传递
导出
摘要 目的观察骨髓间质干细胞复合I型胶原修饰的聚乳酸聚乙醇酸(PLGA)微球支架注入骨质疏松大鼠股骨转子间骨缺损后骨质量的局部改善情况。方法制备I型胶原修饰的PLGA微球支架,将干细胞与该支架共同培养。40只3月龄雌性SD大鼠去势建立骨质疏松模型,随机分为对照组、缓冲液组、细胞组、微球组、细胞+微球组,每组8只,于股骨转子间用电钻制作骨缺损,每侧注入不同材料约30μl。术后1个月和3个月每组各处死4只大鼠,取股骨标本用骨密度仪和MicroCTN定转子间骨密度、骨小梁结构。结果骨髓间质于细胞与I型胶原修饰的PLGA微球支架体外培养7d,扫描电镜发现细胞在支架表面黏附、增殖良好。将不同材料分别植入大鼠骨缺损部位,术后1个月,各组转子间骨矿含量及骨密度比较,差异均无统计学意义。细胞+微球组骨小梁厚度高于缓冲液组和微球组,骨小梁面积百分数高于细胞组和微球组,骨小梁分离度与对照组、缓冲液组和微球组相比有减少趋势,但差异无统计学意义。术后3个月,细胞+微球组转子间骨矿含量有高于缓冲液组和微球组的趋势,但差异无统计学意义;BMD高于对照组、缓冲液组、细胞组和微球组;骨小梁厚度高于对照组、缓冲液组、微球组和细胞组,骨小梁面积百分数高于对照组和缓冲液组,骨小梁分离度与对照组、缓冲液组、细胞组和微球组相比有减少趋势,但差异无统计学意义。结论骨质疏松部位植入干细胞复合I型胶原修饰的PLGA微球1个月,即可修复骨质疏松部位骨缺损;3个月,可改建骨质疏松部位骨小梁结构,提高骨质量。 Objective To evaluate the bone repair capacity of polylactic acid-polyglycofic acid copolymer (PLGA)/colla- gen type I (CoI) microspheres combined with BMSCs after being injected in intertrochanteric bone defect of osteoporotic female rats. Methods Prepared PLC, A microspheres. The microspheres were coated with CoI. BMSCs of the third passage were cultured with PLGA/CoI microspheres. Forty 3-month-old female SD rats were ovariectomized to establish osteoporotic animal models. The osteoporotic rats were randomly divided into 5 groups, including SHAM group, PBS group, Cell group, MS group and Cell+MS group. There were 8 rats in each group. Different material was injected into the intertrochanterie bone defect site which was made with electric drill. Four rats of each group were sacrificed at 1 month and 3 months post-operation. The femora were taken to mea- sure the intertrochanteric bone mineral density (BMD) with DEXA and evaluate trabecular stucture with Micro CT. Results Af- ter 7 days of coculture, BMSCs seeded on PLGA/Co[ mierospheres had nice adheranee and proliferation. There was no difference of BMC and BMD among all groups at 1 month post-operation. Tb.Th of Cell+MS group was higher than that of PBS group and MS group at 1 month post-operation. %Tb.Ar of Cell+MS group was higher than that of Cell group and MS group at 1 month post-opera- tion. Tb.Sp of Cell+MS group had a tendence to decrease compared with other groups but there was no statistical difference at 1 month post-operation. After 3 months of operation, the BMC of Cell+MS group had a tendence to increase compared with that of PBS group and MS group but showed no statistical difference. BMD and Tb.Th of Cell+MS group was higher than those of other groups. %Tb.Ar of Cell+MS group was higher than that of SHAM group and PBS group. Tb.Sp of Cell+MS group had a tendence to reduce compared with other groups but showed no statistical difference. Conclusion The bone defect of osteoporotic site can be repaired 1 month after the injection of the PLGA/CoI microspheres combined with BMSCs. The trabecular reconstruction and bone quality of osteoporotic site can be improved 3 months after the injection.
出处 《中华骨科杂志》 CAS CSCD 北大核心 2014年第1期62-69,共8页 Chinese Journal of Orthopaedics
基金 北京分子科学国家实验窜开放课题基金
关键词 骨质疏松 骨髓祖代细胞 微球体 Osteoporosis Myeloid progenitor cells Microspheres
  • 相关文献

参考文献19

  • 1杨惠林,Hansen AYuan,陈亮,陆俭,倪才方,唐天驷.椎体后凸成形术治疗老年骨质疏松脊柱压缩骨折[J].中华骨科杂志,2003,23(5):262-265. 被引量:283
  • 2Rodriguez JP, Garat S, Gajardo H, et al. Abnormal osteogenesis in osteoporotic patients is reflected by altered mesenchymal stem cells dynamics[J]. J Cell Biochem, 1999, 75(3): 414-423.
  • 3Pountos I, Georgouli T, Henshaw K, et al. The effect of bone mor- phogenetic protein-2, bone morphogenetic protein-7, parathyroid hormone, and platelet-derived growth factor on the proliferation and osteogenic differentiation of mesenchymal stem cells derived from osteoporotic bone [J]. J Orthop Trauma, 2010, 24 (9): 552- 556.
  • 4郝永强,戴尅戎.骨质疏松性骨折愈合的细胞超微结构观察[J].中华骨科杂志,2004,24(11):670-673. 被引量:27
  • 5Ocarino Nde M, Boeloni JN, Jorgetti V, et al. Intra-bone marrow injection of mesenchymal stem ceils improves the femur bone mass of osteoporotic female rats [ J ]. Connect Tissue Res, 2010, 51 (6): 426-433.
  • 6Park JS, Yang HN, Jeon SY, et al. Osteogenic differentiation of human mesenchymal stem cells using RGD-modified BMP-2 coat- ed microspheres [J ]. Biomaterials, 2010, 31 (24): 6239-6248.
  • 7Hesse E, Hefferan TE, Tarara JE, et al. Collagen type I hydrogel allows migration, proliferation, and osteogenic differentiation of rat bone marrow stromal cells [J]. J Biomed Mater Res A, 2010, 94 (2) : 442-449.
  • 8Yang XB, Bhatnagar RS, Li S, et al. Biomimetic collagen scaf- folds for human bone cell growth and differentiation [J], Tissue Eng, 2004, 10(7-8): 1148-1159.
  • 9Ben-Aft A, Rivkin R, Frishman M, et al. Isolation and implanta- tion of bone marrow-derived mesenchymal stem cells with fibrin micro beads to repair a critical-size bone defect in mice [J]. Tis- sue Eng Part A, 2009, 15(9): 2537-2546.
  • 10Langenbach F, Naujoks C, Laser A, et al. Improvement of the cell- loading efficiency of biomaterials by inoculation with stem cell- based microspheres, in osteogenesis [J]. J Biomater Appl, 2012, 26(5): 549-564.

二级参考文献19

  • 1Silverman SL. The clinical consequences of vertebral compression fracture. Bone, 1992, 13(Suppl 2): 27-31.
  • 2Deramond H, Depriester C, Galibert P, et al. Percutaneous vertebroplasty with polymethylmethacrylate: techniques, indications, and results. Radiol Clin North Am, 1998, 36: 533-546.
  • 3Wong W, Reiley MA, Garfin S. Vertebroplasty/kyphoplasty. Journal of Women's Imaging, 2000, 2:117-124.
  • 4Lieberman IH, Dudeney S, Reinhardt MK, et al. Initial outcome and efficacy of "kyphoplasty" in the treatment of painful osteoporotic vertebral compression fractures. Spine, 2001, 26: 1631-1638.
  • 5Kado DM, Browner WS, Palermo L, et al. Vertebral fractures and mortality in older women: a prospective study. Arch Intern Med,1999, 159: 487-492.
  • 6Cooper C, Atkinson EJ, O'Fallon WM, et al. Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985-1989. J Bone Miner Res, 1992, 7:221-227.
  • 7Garfin SR, Yuan HA, Reiley MA. New technologies in spine:kyphoplasty and vertebroplasty for the treatment of painful osteoporotic compression fractures. Spine, 2001, 26: 1511-1515.
  • 8Schlaich C, Minne HW, Bruckner T, et al. Reduced pulmonary function in patients with spinal osteoporotic fractures. Osteoporos Int, 1998, 8: 261-267.
  • 9Lindsay R, Silverman SL, Cooper C, et al. Risk of new vertebral fracture in the year following a fracture. JAMA, 2001, 285:320-323.
  • 10Tohmeh AG, Mathis JM, Fenton DC, et al. Biomechanical efficacy of unipedicular versus bipedicular vertebroplasty for the management of osteoporotic compression fractures. Spine, 1999, 24: 1772-1776.

共引文献308

同被引文献44

  • 1汪玉海,金丽娟,高俊,沈军,魏松英.脂肪干细胞复合PLGA对骨质疏松骨折愈合后生物力学的影响[J].宁夏医科大学学报,2013,35(3):244-247. 被引量:10
  • 2Tesche F, Miosge N. New aspects of the pathogenesis of osteoar-thritis: the role of fibroblast-like chondrocytes in late stages of thedisease[J]. Histol Histopathol, 2005, 20(1): 329-337.
  • 3Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phe-nomenon with wide-ranging implications in tissue kinetics[J]. Br JCancer, 1972, 26(4): 239-257.
  • 4D'Lima DD, Hashimoto S, Chen PC, et al. Cartilage injury induc-es chondrocyte apoptosis[J]. J Bone Joint Surg Am, 2001, 83 Sup-pl 2(Pt 1): 19-21.
  • 5Shiozawa S, Tsumiyama K. Pathogenesis of rheumatoid arthritisand c-Fos/AP-l[J]. Cell Cycle, 2009, 8(10): 1539-1543.
  • 6Bulloj A, Leal MC, Surace El, et al. Detergent resistant mem-brane -associated IDE in brain tissue and cultured cells: Rele-vance to Abeta and insulin degradation[J]. Mol Neurodegener,2008, 3: 22. DOI: 10.1186/1750-1326-3-22.
  • 7Scarpellini M, Lurati A, Vignati G, et al. Biomarkers, type II colla-gen, glucosamine and chondroitin sulfate in osteoarthritis follow-up: the "Magenta osteoarthritis study"[J]. J Orthop Traumatol,2008, 9(2): 81-87. DOI: 10.1007/sl0195-008-0007-5.
  • 8Wang WJ, Yu XH, Wang C, et al. MMPs and ADAMTSs in inter-vertebral disc degeneration[J]. Clin Chim Acta, 2015, 448: 238-246. DOI: 10.1016/j.cca.2015.06.023.
  • 9Liacini A, Sylvester J, Li WQ, et al. Mithramycin downregulatesproinflammatory cytokine - induced matrix metalloproteinase geneexpression in articular chondrocytes[J]. Arthritis Res Ther, 2005,7(4): R777-783.
  • 10Livak KJ, Schmittgen TD. Analysis of relative gene expression da-ta using real - time quantitative PCR and the 2(-Delta Delta C(T))method[Jj. Methods, 2001, 25(4): 402-408.

引证文献3

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部