期刊文献+

过表达pps基因和aroG^(fbr)基因对北京棒杆菌L-色氨酸合成的影响 被引量:1

Effect of pps and aroG^(fbr) overexpression on L-tryptophan production in Corynebacterium pekinense
原文传递
导出
摘要 【目的】通过增加北京棒杆菌(Corynebacterium pekinense)PD-67芳香族氨基酸合成的前体物质磷酸烯醇式丙酮酸(PEP)的供应,解除终产物对芳香族氨基酸合成途径中第一个酶同时也是关键酶3-脱氧-D-阿拉伯庚酮糖-7-磷酸合酶(DS)的反馈抑制并提高抗反馈抑制的DS的活力,使碳流更多地流向芳香族氨基酸合成途径,从而积累更多L-色氨酸。【方法】运用PCR技术扩增北京棒杆菌PD-67磷酸烯醇式丙酮酸合酶基因pps,与表达载体连接构建重组质粒pXPS;运用重叠PCR技术定点突变大肠杆菌(Escherichia coli)受苯丙氨酸调控的DS基因aroG,使相应的编码氨基酸序列发生突变:Leu175Asp,新的基因命名为aroGfbr,与表达载体连接构建重组质粒pXA;构建pps和aroGfbr的共表达重组质粒pXAPS。将3个重组质粒分别转入菌株PD-67,构建工程菌株PD-67/pXPS、PD-67/pXA和PD-67/pXAPS。通过摇瓶发酵研究工程菌株的发酵特性。【结果】酶活分析结果表明,pps基因和aroGfbr基因在北京棒杆菌PD-67中均实现了表达。工程菌株PD-67/pXA粗酶液DS抗反馈抑制分析表明,AroGfbr已解除酪氨酸和苯丙氨酸的反馈抑制。过表达pps基因和aroGfbr基因分别使工程菌L-色氨酸产量提高12.1%和26.8%,双基因共表达可使工程菌的产酸量提高35.9%。【结论】北京棒杆菌PD-67pps基因的过表达以及大肠杆菌来源的解除反馈抑制的aroGfbr的过表达均有助于增加PD-67 L-色氨酸的合成,而双基因的共表达可以进一步提高L-色氨酸的积累量。 [Objective]In order to redirect carbon flows into aromatic amino acids biosynthesis pathway and further improve the production of L-tryptophan in Corynebacterium pekinense PD-67,two schemes were implemented.First,the supply of phosphoenolpyruvate (PEP),one of precursors of L-tryptophan biosynthesis,was increased. Second,the feedback inhibition of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase(DS),a key enzyme in the aromatic amino acids biosynthesis,was relieved and the activity of DS was increased.[Methods]The phosphoenolpyruvate synthase gene (pps) was cloned from C. pekinense PD-67 chromosome by PCR and inserted into expression vector to construct a recombinant plasmid pXPPS; the aroG gene encoding DS isozymes was cloned from Escherichia coli chromosome by PCR and the mutation of Leu175Asp was introduced by site-directed mutagenesis using sequence-overlap extension PCR.The mutated gene named as aroGfbr was cloned to expression vector to construct a recombinant plasmid pXA; and the recombinant plasmid pXAPS co-expressing pps and aroGfbr was constructed.The three recombinant plasmids were transformed into PD-67 to generate the engineering strains PD-67 /pXPS,PD-67/pXA and PD-67/pXAPS,respectively.The fermentation characteristics of the three engineering strains were investigated.[Results]The expression of pps and aroGfbr was confirmed by enzyme activity assays.The deregulation of feedback inhibition of AroGfbr was confirmed by determining DS activity in the presence of three aromatic amino acids.The overexpression of pps and aroGfbr resulted in an increase of L-tryptophan biosynthesis by12. 1% and 26. 8%,respectively,while the co-expression of two genes increased the production of L-tryptophan by 35.9% in the engineering strain PD-67/pXAPS. [Conclusion] Both of the overexpressions of the pps gene and aroGfbr gene can increase L-tryptophan biosynthesis,while the production was further improved by the co-expression of the two genes.
出处 《微生物学报》 CAS CSCD 北大核心 2014年第1期24-32,共9页 Acta Microbiologica Sinica
关键词 北京棒杆菌 磷酸烯醇式丙酮酸合酶 3-脱氧-D-阿拉伯庚酮糖-7-磷酸合酶 反馈抑制 过表达 L-色氨酸 Corynebacterium pekinense phosphoenolpyruvate synthase 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase feedback inhibition overexpression L-tryptophan
  • 相关文献

参考文献20

  • 1Bongaerts J, Kramer M, Mailer U, Raeven L, Wubbolts M. Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metabolic Engineering, 2001, 3 (4) : 289-300.
  • 2Ikeda M. Towards bacterial strains overproducing L- tryptophan and other aromatics by metabolic engineering. Applied Microbiology and Biotechnology, 2006, 69 ( 6 ) : 615-626.
  • 3Ikeda M, Nakanishi K, Kino K, Katsumata R. Fermentative production of tryptophan by a stable recombinant strain of Corynebacterium glutamicum with a modified serine-biosynthetic pathway. Bioscience, Biotechnology and Biochemistry, 1994, 58 (4) : 674-678.
  • 4Liu YJ, Li PP, Zhao KX, Wang BJ, Jiang CY, Drake HL, Liu SJ. Corynebacterium glutamicum contains 3- deoxy-D-arabino-heptulosonate 7-phosphate synthases that display novel biochemical features. Applied and Environmental Microbiology, 2008, 74( 17): 5497-5503.
  • 5Dominguez H, Lindley ND. Complete sucrose metabolism requires fructose phosphotransferase activity in Corynebacterium glutamicum to ensure phosphorylation of liberated fructose. Applied and Environmental Microbiology, 1996, 62 (10) : 3878-3880.
  • 6李永辉,刘云,王世春,童朝阳,徐琪寿.大肠杆菌ppsA和tktA基因的串联表达[J].生物工程学报,2003,19(3):301-306. 被引量:7
  • 7Liao HF, Lin LL, Chien HR, Hsu WH. Serine 187 is a crucial residue for allosteric regulation of Corynebacterium glutamicum 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase. FEMS Microbiology Letters, 2001, 194 ( 1 ) : 59-64.
  • 8Umbarger HE. Amino acid biosynthesis and its regulation. Annual Review of Biochemistry, 1978, 47: 532-606.
  • 9Hu C, Jiang P, Xu J, Wu Y, Huang W. Mutation analysis of the feedback inhibition site of phenylalanine- sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase of Escherichia coli. Journal of Basic Microbiology, 2003, 43 (5) : 399-406.
  • 10Jakoby M, Ngouoto-Nkili C-E, Burkovski A. Construction and application of new Corynebacterium glutamicum vectors. Biotechnology Techniques, 1999, 13 (6) : 437- 441.

二级参考文献24

  • 1沈天翔,那淑敏,肖文中,贾盘兴.棒状类细菌电击转化中多种条件对转化效率的影响[J].生物工程学报,1995,11(3):245-249. 被引量:15
  • 2张智清,姚立红,侯云德.含P_RP_L启动子的原核高效表达载体的组建及其应用[J].病毒学报,1990,6(2):111-116. 被引量:178
  • 3陈小芳,赵智,张英姿,王宇,丁久元,李开,张春花.北京棒杆菌邻氨基苯甲酸合成酶基因的克隆、序列分析及表达[J].微生物学报,2007,47(1):48-53. 被引量:5
  • 4Wood T. The pentose phosphate pathway. USA: Academic Press, Orlando, FL, 1985.
  • 5Datta AG, Racker E. Mechanism of action of transketolase. I. Properties of the crystalline yeast enzyme. The Journal of Biological Chemistry, 1961,236 : 617-623.
  • 6Demuynck C, Bohe J, Hecquet L, Dalmas V. Enzyme- Catalyzed Synthesis of Carbohydrates - Synthetic Potential of Transketolase. Tetrahedron Letters, 1991, 32 ( 38 ) : 5085 -5088.
  • 7Kobori Y, Myles DC, Whitesides G M. Substrate- Specificity and Carbohydrate Synthesis Using Transketolase. Journal of Organic Chemistry, 1992,57 (22) :5899-590?.
  • 8Esakova OA, Meshalkina LE, Golbik R, Hubner G, Kochetov GA. Donor substrate regulation of transketolase. European Journal of Biochemistry, 2004, 271 (21) :4189-4194.
  • 9Nikkola M, Lindqvist Y, Schneider G. Refined structure of transketolase from Saccharomyces cerevisiae at 2.0 A resolution. Journal of molecular biology, 1994,238 ( 3 ) : 387-404.
  • 10Gerhardt S, Echt S, Busch M, Freigang J, Auerbach G, Bader G, Martin WF, Bacher A, Huber R, Fischer M. Structure and properties of an engineered transketolase from maize. Plant Physiology, 2003, 132 ( 4 ) : 1941- 1949.

共引文献7

同被引文献12

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部