期刊文献+

水对无定形SiO_2拉伸特性影响的反应分子动力学模拟

Influence of water on the tensile properties of amorphous silica: a reactive molecular dynamics simulation
原文传递
导出
摘要 潮湿对SiO2的强度有重要影响.采用反应场分子动力学模拟方法,研究液态水对无定形SiO2(a-SiO2)准静态拉伸特性的影响.准静态拉伸模拟的结果表明,在干燥条件下,a-SiO2的拉伸强度为9.4 GPa,而在含液态水时则下降为4.7 GPa,表明液态水使得a-SiO2拉伸强度发生显著下降.根据应力-应变曲线分析可知,干燥条件下a-SiO2结构的刚度随着拉伸应变的增加保持稳定,而含液态水的a-SiO2刚度随着拉伸应变的增加而逐步降低,并且应变为16%—20%时的应力-应变曲线类似于金属的屈服现象.通过对拉伸过程的原子图像分析可知,含液态水a-SiO2的拉伸过程并没有发生塑性变形,而是因为应力增大加速了水解反应,使得应力-应变曲线表现出上述塑性现象. Humidity has an important influence on the strength of the silica(SiO2). We examine the influence of liquid water on the tensile properties of amorphous silica(a-SiO2) using reactive molecular dynamics simulation. The results of the quasi-static tension show that liquid water reduces the tensile strength of a-SiO2 significantly. The tensile strength of dry a-SiO2 is 9.4 GPa while the tensile strength of a-SiO2 in the presence of liquid water is only 4.7 GPa. The strain-stress curve of dry a-SiO2 indicates that the stiffness of the a-SiO2 structure becomes stable with the increase of strain. On the other hand, the stiffness of the a-SiO2 with liquid water is gradually reduced with the increase of tensile strain. Moreover, the strain-stress curve of a-SiO2 in a strain range of 16% to 20% in the presence of liquid water is similar to the yielding phenomenon of plastic metal. The snapshots of the a-SiO2 in the presence of liquid water during the tension show that no plastic deformation is observed. We propose that the stress-enhanced hydrolysis releases part of the stress for the rupture of the Si—O bonds, so that the stiffness of the a-SiO2 in the presence of liquid water decreases with the increase of strain.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第24期258-264,共7页 Acta Physica Sinica
基金 国家自然科学基金(批准号:51175503)资助的课题~~
关键词 无定形SiO_2 机械强度 分子动力学模拟 amorphous silica mechanical strength water molecular dynamics simulation
  • 相关文献

参考文献2

二级参考文献30

  • 1李艳宁,李树民,郭彤,房轩,傅星,胡小唐.基于微梁谐振原理的相对湿度检测技术[J].纳米技术与精密工程,2007,5(2):85-88. 被引量:3
  • 2Lewis, J. P.; Glaesemann, K. R.; VanOpdorp, K.; Voth, G. A. J. Phys. Chem. A 2000, 104, 11384. doi: 10.1021/jp002173g.
  • 3Chakraborty, D.; Muller, R. P.; Goddard, W. A., III. J. Phys. Chem. A 2001, 105, 1302. doi: 10.1021/jp0026181.
  • 4Sharia, O.; Kuklja, M. M. J. Phys. Chem. B 2011, 115, 12677.
  • 5姜富灵,翟高红,丁黎,岳可芬,刘妮,史肩祯,文振翼.物理化学学报,2010,26,409.doi:10.3866/PKUWHXB20100128.
  • 6Brill, T. B. J. Prop. Power 1995, 11, 740. doi: 10.2514/3.23899.
  • 7Tang, C. J.; Lee, Y. J.; Litzinger, T. A. ,Z Prop. Power 1999, 15, 296. doi: 10.2514/2.5427.
  • 8Tarver, C. M.; Chidester, S. K.; Nichols, A. L.J. Phys. Chem. 1996, 100, 5794. doi: 10.1021/jp953123s.
  • 9Gilman, J. J. Phil. Maga. B 1995, 71 (6), 1057. doi: 10.1080/ 01418639508241895.
  • 10Gilman, J. J. Phil. Maga. B 1993, 67 (2), 207. doi: 10.1080/ 13642819308207868.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部