期刊文献+

基于最小统计和人耳掩蔽特性的语音增强算法

Speech Enhancement Algorithm Based on Minimum Statistics and Human Auditory Masking Properties
下载PDF
导出
摘要 提出了一种基于最小统计和人耳掩蔽特性的语音增强算法,通过最优平滑和最小约束递归平均从含噪语音中估计噪声的均值,推导出一种新的基于掩蔽特性的谱减系数计算公式。实验结果表明,该算法优于传统的掩蔽特性算法,含噪语音经过增强后,残留的音乐噪声更小。 A speech enhancement algorithm based on minimum statistics and human auditory masking properties is pro- posed. The mean vector of the noise spectrum is estimated from the noisy speech by optimal smoothing and minima controlled reeursive averaging. Then a novel estimation formula using masking properties for the spectral subtraction eoeffieients is giv- en. The experiment results show that the proposed algorithm is better than traditional masking algorithm and the enhanced speech has less musical noise.
作者 吕勇 周琳
出处 《电声技术》 2013年第12期57-60,69,共5页 Audio Engineering
基金 现代信息科学与网络技术北京市重点实验室资助课题(XDXX1308)
关键词 最小统计 掩蔽特性 语音增强 谱减法 minimum statistics masking properties speech enhancement spectral subtraction method
  • 相关文献

参考文献8

  • 1QUATIERIT F.Discrete-time speech signal processing:principles and practice[M]{H}北京:电子工业出版社,2004.
  • 2BOLL S F. Suppression of acoustic noise in speech using spectral subtraction[J].Acoustics Speech and Signal Processing,1979,(02):113-120.
  • 3VIRAG N. Single channel speech enhancement based on masking properties of the human auditory system[J].Speech and Audio Processing,1999,(02):126-137.doi:10.1109/89.748118.
  • 4MARTIN R. Noise power spectral density estimation based on optimal smoothing and minimum statistics[J].Speech and Audio Processing,2001,(05):504-512.
  • 5COHEN I,BERDUGO B. Noise estimation by minima controlled recursive averaging for robust speech enhancement[J].Signal Processing Letters,2002,(01):12-15.
  • 6蔡汉添,袁波涛.一种基于听觉掩蔽模型的语音增强算法[J].通信学报,2002,23(8):93-98. 被引量:16
  • 7吕勇,方元.基于最小频带能量的变噪声电平语音增强[J].电声技术,2006,30(2):47-51. 被引量:4
  • 8翟士奇,卢晶,邹海山.一种基于最小能量统计的语音增强改进算法[J].电声技术,2012,36(9):41-43. 被引量:3

二级参考文献20

  • 1吕勇,方元.基于最小频带能量的变噪声电平语音增强[J].电声技术,2006,30(2):47-51. 被引量:4
  • 2黄苏雨,梁声灼,黄苏园.语音增强方法综述[J].计算机与现代化,2007(3):16-20. 被引量:16
  • 3[1]BOLL S F.Suppression of acoustic noise in speech using spectral subtraction[J].IEEE Trans Acoustic, Speech, Signal Processing, 1979, 27(2):113-120.
  • 4[2]EPHRAIM Y, MALAH D. Speech enhancement using a minimum mean square error short time spectral amplitude estimator[J]. IEEE Trans Acoustic, Speech, Signal Processing, 1984, 32(6):1109-1121.
  • 5[3]TSOUKALAS D E, MOURJOPOULOS J N ,KOKKINAKIS G.Speech enhancement based on audible noise suppression[J]. IEEE Trans Speech and Audio Process, 1999, 7(3):497-514.
  • 6[4]SOON L Y, KOH S N. Low distortion speech enhancement[J]. IEEE Proc Vis Image Signal Processing, 2000, 147(3):247-250.
  • 7[5]TSOUKALAS D, PARASKEVAS M ,MOURJOPOULOS J, Speech enhancement using psycho-acoustic criteria[A]. Proc IEEE ICASSP 1993[C].Minneapolis, 1993.359-361.
  • 8[6]SINHA D, TEWFIK A H.Low bit rate transparent audio compression using adapted wavelets [J].IEEE Trans Signal Processing, 1993, 41(12):3463-3479.
  • 9[7]JOHNSTON J D. Transform coding of audio signal using perceptual noise criteria[J]. IEEE JSelect Areas Commun,1988,6(2):314-323.
  • 10BOLL S F. Suppression of acoustic noise in speech using spectral subtraction[J]. IEEE Trans. Acoust., Speech,Signal Processing, 1979,27 (2) : 113-120.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部