期刊文献+

一种基于 DICOM 序列影像的肺结节 ROI 自动检测方法

Pulmonary Nodules ROI Automatic Detection Based on DICOM Sequence Images
下载PDF
导出
摘要 本文是以DICOM标准的肺部序列影像为研究对象,将CT图像序列分割提取获得肺实质模块,再获取种子区域进行优化分割,最后通过ROI检测提取肺部特征信息并进行分类,从而达到肺结节ROI自动检测的目的。实验结果表明本文算法对微小结节特别是3mm以下的结节敏感性不高,而直径大于5mm的结节检出较为准确。实验中出现假阳性结节的个数较多,说明所选特征向量与判别分类标准比较严格,分类器的一些参数需要进一步优化,以达到更高的检出率及更低的漏检率。 This paper is based on lung image sequence of DICOM standard as the research object, segmenting a sequence of CT image for lung parenchyma, then getting the seed region were again optimized segmentation, and finaly being detected by ROI extraction and classification of lung feature information, so achieve the automatic detection of ROI lung nodules. Experimental results show that for the proposed algorithm nodules sensitivity is not high, especially less than 3mm tiny nodules, and the detection of the diameter greater than 5mm nodules is more accurate, the number of false-positive nodules in the experiment are larger, indicating the selected feature vectors and discriminate classification criteria is stricter, and the classifier needs to optimize some parameters in order to achieve a higher detection rate and lower missed rate.
出处 《中国卫生信息管理杂志》 2013年第6期548-554,共7页 Chinese Journal of Health Informatics and Management
关键词 肺结节 ROI检测 自动分割 Lung nodule ROI detection Automatic segmentation
  • 相关文献

参考文献15

  • 1Daw-Tung Lin,Chung-ren Yan,Wan-Tai chen. Autonomous detection of pulmonary nodules on CT images with a neural network-based fuzzy system[J].{H}Computerized Medical Imaging and Graphics,2005,(06):447-458.
  • 2Omar S. Al-Kadi,D. Waston. Texture Analysis of Aggressive and onaggressive Lung Tumor CE CT Images[J].{H}IEEE Transactions on Biomedical Engineering,2008,(07):1826-1829.
  • 3Q. Li,S.Katsuragawa,T.Ishida. Contralateral subtraction:A novel technique for detection of asymmetric abnormalities on digital chest radiographs[J].{H}Medical Physics,2000,(17):47-55.
  • 4Zheng B,Ken Leader III J,Maitz G. S. A simple method for automated lung segmentation in X-ray CT images[J].Proceedings of the SPIE on Medical Imaging,2003,(5032):1455-1463.
  • 5J.W. Tukey. Exploratory Data Anal-ysis[M].WesleyPress,1977.
  • 6Mallat S,Hwang W. L.Singularity detection and processing with wavelets[J].{H}IEEE Transactions on Information Theory,1992,(02):617-643.
  • 7Yoo T S,Ackerman M J,Lorensen W E. Engineering and Algorithm Design for an Image Processing API:A Technical Report on ITK-the InsightToolkit[J].Studies in Health Technology and Informatics,2002.586-592.
  • 8S. G. Armato,M. L. Giger,C. J. Moran. Computerized detection of pulmonary nodules on CT scans[J].{H}RADIOGRAPHICS,1999,(05):1303-1311.
  • 9T.Ezoe,H. Takizawa,S. Yamamoto. An automatic detection method of lungcancers including ground glass opacities from chest X-ray CT images[J].{H}Proceedings of SPIE,2002,(4684):1672-1680.
  • 10J.Dehmeshki,H. Amin,M. Valdivieso. Segmentation of Pulmonary Nodules in Thoracic CT Scans:A Region Growing Approach[J].IEEE Trans Med Imaging Med Phys,2008,(27):467-480.

二级参考文献12

  • 1LI Q. Recent progress in computer-aided diagnosis of lung nodules on thin-section CT [J]. Computerized Medical Imaging and Graphics, 2007,31(4-5):248-257.
  • 2YAMAMOTO S. Image processing algorithm of computer-aided diagnosis in lung cancer screening by CT [J].System and Computers in Japan,2005,36(7)540-53.
  • 3DIO K. Computer-aided diagnosis in medical imaging: Historical review, current status and future potential [J]. Computerized Medical Imaging and Graphics, 2007, 31 (4-5): 198- 211.
  • 4MICHAEL F, SAMUEL G, CHARLES R, et al. The lung image database consortium (LIDC) data collection process for nodule detection and annotation [J]. Academic Radiology, 2007, 14(12) : 1464-1474.
  • 5REEVES A P, BIANCARDI A M, APANASOVICH T V, et al. The lung image database consortium (LIDC) : A comparison of different size metrics for pulmonary nodule measurements [J]. Academic Radiology, 2007, 14 (12): 1475- 1485.
  • 6MCLENNAN S G, MCNITT-GRAY M F, MEYER C R, et al. Lung image database consortium: Developing a resource for the medical imaging research community [J]. Radiology, 2004(232) : 739-748.
  • 7The Lung Image Database Consortium. NBIA at CBIIT Image Collections, http://wiki, nci. gov/display/CIP/LIDC, 2009- 12-06/2009-12-01.
  • 8National Cancer Institute. Lung Image Database Consortium (LIDC), http://imaging, cancer, gov/programsandresources/ InformationSystems/LIDC.
  • 9Osirix Foundation. Oslrix Imaging Software, http://www. osirix-viewer. com/.
  • 10ClearCanvas Inc. ClearCanvas Workstation 2.0 SP1, http:// www. cleareanvas, ca/.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部