期刊文献+

极低信噪比条件下主动声纳回波信号的提取

Extraction of echo signals from active sonar under extremely low SNRby using spare decompositon
下载PDF
导出
摘要 为优化在极低信噪比条件下对主动声纳回波信号的提取效果,引入了基于非线性理论的稀疏分解方法,并在LDW粒子群算法的基础上,通过改进算法中一个惯性因子的方法对粒子群算法进行了优化。用Matlab软件模拟仿真实验论证表明:改进算法不仅能够加快算法的收敛速度,同时又不降低算法提取信号的性能;在信噪比不低于-32dB的情况下,该方法具有较好的回波提取效果。 In order to optimize the effect of extracting echo signals from the active sonar under the condition of the extremely low SNR, this paper introduces a signal-decomposed method based on the non-linear spare decomposition and optimized the particle group algorithm based on LDW by impro- ving an inertial factor in the algorithm. The Matlab software is used for simulation and experiment. The results show that the improved algorithm can not only increase its convergent speed but also maintain the performance of signal extraction. When SNR is more than --32db, this method functions very well in the extraction of echoes.
出处 《海军工程大学学报》 CAS 北大核心 2013年第6期99-103,共5页 Journal of Naval University of Engineering
关键词 极低信噪比 稀疏分解 粒子群优化 声纳回波 extremely low SNR spare deeomposition PSO sonar echo
  • 相关文献

参考文献4

  • 1孙文俊,杨益新.基于蒙特卡洛方法的主动声纳信号检测性能分析[J].计算机仿真,2006,23(8):119-121. 被引量:6
  • 2MALLAT S, ZHANG Zhi-feng. Matching pursuits with timefrequency dictionaries [J]. IEEE Trans. Signal Process, 1993,41(2) :3397-3415.
  • 3崔红梅.基于改进粒子群算法的c-均值聚类算法研究[J].南京师范大学学报,2007,22(4):16-18.
  • 4ARTHUR P L, PHILIPOS C L, Voiced/unvoiced speech discrimination in noise using gabor atomic decomposition [J]//Proc. of IEEE ICAssp. , 2003,1 (4) : 820-828.

二级参考文献5

  • 1朱埜 .主动声纳检测信息原理[M].北京:海洋出版社,1990.
  • 2赵树杰.信号检测与估计理论[M].西安:西安电子科技大学出版社,1998..
  • 3Richard O Nielsen.Sonar Signal Processing[M].Artech House,1991.
  • 4A D Whalen.Detection of Signals in Noise[M].Academic Press,New York,1971.
  • 5赵树杰.随机相位信号检测概率的递推算法[J].西安电子科技大学学报,1999,26(5):600-603. 被引量:1

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部