期刊文献+

2-qubit系统的纠缠鲁棒性

Robustness of two-qubit system under the depolarization noise
下载PDF
导出
摘要 研究了2-qubit量子系统在退极化噪声作用下的一些纠缠特性.通过对ansatz态纠缠演化的分析,给出了纠缠和纠缠鲁棒性的解析关系.此外纠缠猝死时间在很大程度上取决于量子态的纠缠和鲁棒性.对于纯态,纠缠鲁棒性完全取决于纠缠;但是混态将会复杂许多,其鲁棒性除了受自身纠缠的影响以外,还会受到其他纠缠度的影响. Some entanglement properties of two-qubit system under the depolarization noise were in- vestigated.By analyzing the evolution of entanglement for the ansatz states,the analytical expression be- tween entanglement and entanglement robustness was obtained.In addition,the time of entanglement sud- den death(ESD)depended largely on the entanglement and entanglement robustness.It could be found that entanglement robustness of two-qubit system,for an arbitrary pure state,completely depended on its entanglement.However,this was not always true in mixed system.The robustness of mixed state was in- fluenced by its own entanglement,but also by other effects of entanglement.
出处 《河北大学学报(自然科学版)》 CAS 北大核心 2013年第6期592-597,共6页 Journal of Hebei University(Natural Science Edition)
基金 河北省科学技术研究与发展指导项目(Z2010112) 河北省科技支撑计划项目(10213936)
关键词 纠缠 退极化噪声 纠缠猝死 鲁棒性 entanglement depolarization noise entanglement sudden death robustness
  • 相关文献

参考文献18

  • 1NIELSEN M A,CHUANG I L.量子计算和量子信息[M].郑大钟,赵千川,译.北京:清华大学出版社,2005.
  • 2BENNETT C, BRASSARD G,CREPEAU C, et al. Teleporting an unknown quantum state via dual classical and Ein- stein-Podolsky-Rosen channels [J]. Phys Rev Lett, 1993 , 70: 1895- 1899.
  • 3GROVER I, K. Quantum mechanics helps in searching for a needle in a haystack [J]. Phys Rev Lett, 1997, 79: 325 - 328.
  • 4BENNETT C H, WIESNER S J. Communication via one-and two-particle operators on Einstein - Podolsky - Rosen states [J]. Phys Rev Lett,1992, 69, 2881- 2884.
  • 5EKERT A K. Quantum cryptography based on Bell's theorem [J]. Phys Rev Lett, 1991, 67:661 -663.
  • 6YU T, EBERLY J H. Finite-time disentanglement via spontaneous emission [J]. Phys Rev Lett, 2004, 93:140404.
  • 7ALMEIDA M P, MELO F D, HOR-MEYI.L M, et al. Environment-induced sudden death of entanglement[J]. Science, 2007, 316, 579-582.
  • 8VIDAL G, TARRACH R. Robustness of entanglement [J]. Phys Rev A, 1999, 59:141 - 155.
  • 9SIMON C, KEMPE J. Robustness of multiparty entanglement[J]. Phys Rev A, 2002 65:052327(1 -4).
  • 10ZHAO Baokui, DENG Fuguo. Residual effect on the robustness of multiqubit entanglement [J]. Phys Rev A, 2010, 82: 014301(1-4).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部