期刊文献+

基于均匀特征匹配的无人机影像拼接 被引量:1

UAV Image Mosaic Based on Uniform Features Matching
下载PDF
导出
摘要 通过特征匹配的方法进行无人机影像拼接,不需要地面控制点坐标和内外方位元素.基于SIFT算法进行特征匹配,对于匹配中容易出现的误匹配点,通过合理控制算法中的阈值大小并采用唯一性约束和视差约束来进行剔除,采用分块控制匹配点数目来剔除密集匹配点对,使匹配点对分布均匀.使用RANSAC算法来计算影像之间的转换模型,实验证明这种方法具有很好的拼接效果. A new approach for mosaicing images in unmanned aerial vehicle (UAV) is proposed in the paper. Firstly, the image features are extracted by the multi-scale algorithm, which is a SIFT improved. Based on the uniqueness constraint and parallax constraint, the images are matched. The dense matched point-pairs are processed uniformly using the partitioning images. Secondly, the transformation model between images is built in the RANSAC. The experiment results show that the approach is effective for the UAV image mosaic.
出处 《北京建筑工程学院学报》 2013年第4期47-51,共5页 Journal of Beijing Institute of Civil Engineering and Architecture
关键词 影像拼接 均匀匹配 RANSAC算法 image mosaic uniform-matching RANSAC algorithm
  • 相关文献

参考文献5

二级参考文献20

  • 1李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:154
  • 2DAVID L G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 3Mikonaiczyk K, Sehmid C. A performance evaluation of local descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10):1 615-1 630.
  • 4Mikolajczyk K, Schmid C. A performance evaluation of local descriptors[J]. IEEE Trans. Pattern Analysis and Machine Intelli- gence, 2005, 27(10):1 615-1 630.
  • 5Ke Y, Sukthankar R. PCA-SIFT: A More Distinctive Representation for Local Image Descriptors[C]. Proceedings of IEEE Inter- national Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 2004 : 511-517.
  • 6Bay H, Tuytelaars T, Gool L V. SURF: Speeded up Robust Features[C]. European Conference on Computer Vision, Springer- Verlag, Berlin, Heidelberg, 2006: 404-417.
  • 7Morel J M, Yu G S. ASIFT: A new framework for fully affine invariant image comparison[J]. Society for Industrial and applied Mathematics Journal on Image Sciences, 2009, 2(2): 438-469.
  • 8Mikolajczyk K, Schmid C. Scale and affine invariant interest point detectors[J]. International Journal of Computer Vision, 2004, 60(1) : 63-86.
  • 9DAVID G L. Distinctive Image Features from Scale-invari- ant Key Points [J]. International Journal of Computer Vision, 200d,60 ( 2 ) : 91 - 110.
  • 10ETHAN R, VINCENT R, KURT K, et al. ORB: an Efficient Alternative to SIFI" or SURF[ C]//2011 IEEE International Conference on Barcelona: [ s. n. ] , 2011. Computer Vision (ICCV).

共引文献17

同被引文献3

引证文献1

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部