期刊文献+

求解变系数对流扩散方程的高阶紧致差分格式 被引量:2

A High-order Compact Finite Difference Scheme for Solving the Variable Coefficient Convection Diffusion Equations
下载PDF
导出
摘要 利用变量替换在对流扩散方程中消去对流项得到反应扩散方程组,采用Crank-Nicolson格式处理时间导数,构造新的二阶中心差分格式和四阶紧致差分格式处理空间导数。证明了2种新格式是无条件稳定的方法。数值试验结果表明:与标准二阶中心差分格式相比,这2种新方法具有更好的健壮性,并且可有效求解对流占优问题。 In this paper, the variable substitutions were used to eliminate the convection term in the nonlinear convection diffusion equations. Then, Crank-Nieolson scheme was used to process time de-rivative ; a new 2nd scheme and a fourth-order compact difference scheme were structured for the spa-tial derivative. Proofs of unconditional stability of these new schemes were given in the article. Com-pared with the standard central difference scheme, the new methods are more robust for the convection dominated problems.
作者 杨录峰
出处 《重庆理工大学学报(自然科学)》 CAS 2013年第11期120-125,共6页 Journal of Chongqing University of Technology:Natural Science
基金 国家自然科学基金资助项目(10961002) 北方民族大学自主科研项目(2011ZQY026)
关键词 变量替换 紧致差分格式 CRANK-NICOLSON格式 无条件稳定 对流扩散方程 variable substitutions compact difference scheme Crank-Nicolson scheme uncondi-tional stability convection diffusion equations
  • 相关文献

参考文献6

  • 1Wang Y M,Guo B Y. Monotone finite difference schemes for nonlinear systems with mixed quasimonotonicity [ J ]. J. Math. A- nal ,2002,267 (4) :599 - 625.
  • 2Hashim A Kashkool, Shaimaa A Kadhum. Error estimate of the DGFEM for nonlinear convection-diffusion Problems [ J ]. Inter- national Mathematical Forum,2012,49 (7) :2415 - 2430.
  • 3魏剑英.求解一维对流扩散反应方程的一种隐式差分格式[J].四川理工学院学报(自然科学版),2011,24(5):580-582. 被引量:7
  • 4Hundsdorfer W, Verwer J. Numerical solution of time-dependent advection-diffusion-reaction equations [ M ]. Springer, Berlin. 2003.
  • 5Wenyuan Liao,Jianping Zhu. A Fourth-Order Compact Finite Difference Scheme for Solving Unsteady Convection-Diffusion E- quations [ J ]. Computational Simulations and Applications,2011 (10) : 81 - 96.
  • 6Seydel, R. Tools for computational finance [ M ]. Berlin: Springer,2002.

二级参考文献7

共引文献6

同被引文献14

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部