摘要
利用变量替换在对流扩散方程中消去对流项得到反应扩散方程组,采用Crank-Nicolson格式处理时间导数,构造新的二阶中心差分格式和四阶紧致差分格式处理空间导数。证明了2种新格式是无条件稳定的方法。数值试验结果表明:与标准二阶中心差分格式相比,这2种新方法具有更好的健壮性,并且可有效求解对流占优问题。
In this paper, the variable substitutions were used to eliminate the convection term in the nonlinear convection diffusion equations. Then, Crank-Nieolson scheme was used to process time de-rivative ; a new 2nd scheme and a fourth-order compact difference scheme were structured for the spa-tial derivative. Proofs of unconditional stability of these new schemes were given in the article. Com-pared with the standard central difference scheme, the new methods are more robust for the convection dominated problems.
出处
《重庆理工大学学报(自然科学)》
CAS
2013年第11期120-125,共6页
Journal of Chongqing University of Technology:Natural Science
基金
国家自然科学基金资助项目(10961002)
北方民族大学自主科研项目(2011ZQY026)