期刊文献+

基于相位一致模型的边缘检测 被引量:1

Image feature detection based on phase congruency model
下载PDF
导出
摘要 边缘检测在图像处理和理解中占有重要地位,传统的边缘检测是基于梯度算子,而相位一致方法是基于傅里叶变换理论的一种图像特征检测方法。其原理是指图像特征总发生在相位的最大叠合处。通过计算局部能量,来度量其图像各个位置的相位一致值。利用log Gabor滤波器组实现相位一致模型。为了检验相位一致模型在边缘检测中的有效性,利用该方法对工业图像和遥感图像进行边缘检测实验,并将该方法与canny算子和sobel算子进行对比分析。结果表明相位一致方法可以有效地提取边缘特征。 The algorithm of phase congruency developed from Fourier transform is applied to the image edge detection. The theory on phase congruency is that image edges always occur at points where the phases of harmonic components come to the maximum congruency. The edge detection is completed by constructing the local energy model. The log Gabor function for detecting the image edge features is introduced and compared with the canny and sobel operators. The proposed algorithm of Phase Congruency is implemented into the industry image and remotely-sensed image. The results show that the algorithm is effective to detect image edges.
作者 邵恒 陈彬彬
出处 《黑龙江工程学院学报》 CAS 2013年第4期22-24,共3页 Journal of Heilongjiang Institute of Technology
关键词 相位一致 logGabor 局部能量 边缘检测 =phase congruency log Gabor local energy image feature detection
  • 相关文献

参考文献10

  • 1SOBEI. I. Neighborhood Coding of Binary Images for Fast Contour Following and General Array Binary Pro- cessing [J]. Compuler Graphics and Image Processing, 1978, 8:127- 135.
  • 2CANNY J F. A Comlmlalional App roach m Edge Deleclion [J].IEEE Transactions on Paltern Analysis and Machine Intelligence. 1986. 8(6) :679 -698.
  • 3YI S, LABATE D. EASLEY D. KRIM H. A Shearlet Approach to Edge Analysis and Delecfion[C]. IEEE Trans. Image Processing. 2009. 18(5): 929 -941.
  • 4TOIVANEN P J, ANSAMAKI J. PARKKINEN J P S. MIEI.IKAINEN J. Edge Detection in Multispectral Ima- ges Using the Self organizing Map[J]. Pallern Recognition I.etters, 2003. 24(16): 2987- 2991.
  • 5SHEN J, CASTAN S. An Optimal Linear Operator for Edge Delection[C]. Conference on. Vision and Pauern Recognition. Miami, 1986:109-114.
  • 6MORRONE M C, OWENS R A. Fealure Detectkm from I.ocal Energy [J]. Pattern Recognition l.etters, 1987, 6 (5):303 313.
  • 7MORRONE M C, BURR D C. Feature Detection in Hu- man Vision: A Phase2- Dependent Energy Model [A]. Proceedings of the Royal Society of London, Series B, Biological Sciences[C].London: The Royal Society, 1988, 235 (1280):221 -245.
  • 8KOVESI P. Invariant Measures of Image Features from Phase Information [D]. Pertb: The University of West ern Australia, 1996.
  • 9AHMED Z, SAYADI M, FANIECH F. Satellite Images Features Extraction using Phase Congruency Model [J]. IJCSNS International Journal of Compuler Science and Network Security, 2009,9(2): 192 -197.
  • 10MULET PARADA M. NOBLE J A. 2D+T Acouslic Boundary Detection in Echocardiography [ ]roceed-ings of the First International Conference on Medical Image Computing and ComputergAssisted Intervention [C] .[s.l.]:[s. n.] ,1998,1496:806-813.

同被引文献9

  • 1BAATZ M, SCHAPE A. Object-oriented and multi- scale image analysis in semantic networks[C]. In: Pro- ceedings of the 2nd International Symposium on Opera- tionalization of Remote Sensing, 1999.
  • 2LANTUI~JOUL C. La Squelettisatoin et Son Applica- tion aux Mesures Topologiques des Mosaiques Polycri- stalines[D]. School of Minews, 1978.
  • 3VINCENT L, SOILL E P. Watersheds in Digital Spaces: An efficient Algorithm Based on Immersion Simulations[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1991,13 (6) : 583-598.
  • 4HARIS K, EFSTRATIADIS S N, MAGLAVERAS N, et al. Hybrid image segmentation using watersheds and fast region merging[J-]. IEEE Trans. on Image Pro- cessing, 1998,7 (12) : 1684-1699.
  • 5BEUCHER S. Segmentation d' Images et Morphologie Mathematique[D]. Paris.. School of Mines, 1990.
  • 6SAINT-MARC P, CHEN J, MEDIONI G. Adaptive smoothing: a general tool for early vision[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1991,13 (6):514-529.
  • 7CANNY J F. A computational approach to edge detec- tion[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1986,8(6) : 679-698.
  • 8SOBEL I. Neighborhood coding of binary images for fast contour following and general binary array pro- cessing[J]. Computer Graphics and Image Processing, 1978,8:127-135.
  • 9MORRONE M C, ROSS J, BURR D C, et al. Mach Bands Are Phase Dependent [J]. Nature, 1986, 324: 250-253.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部