期刊文献+

周期性果蝇模型解的整体稳定性 被引量:1

Global Attractivity in a Periodic Nicholson's Blowflies Model
下载PDF
导出
摘要 研究了系数和时滞项为周期函数的果蝇模型,得到了周期解整体稳定的两个充分条件.同时,得到了蜕化情况下周期解整体稳定的一个充分条件. This paper is concerned with a class of generalized Nicholson's blowflies model of which coefficients and delays are periodic functions. Two sufficient global stability conditions for this model are given. In the degenerate case, i.e, the coefficients and delays are all constants, a sufficient global stability condition for the positive equilibrium is also obtained.
作者 叶辉 蔡东汉
出处 《数学物理学报(A辑)》 CSCD 北大核心 2013年第6期1013-1021,共9页 Acta Mathematica Scientia
基金 国家自然科学基金(71271158)资助
关键词 果蝇模型 时滞微分方程 整体稳定 正周期解 Nicholson's blowflies model Delay differential equation Global stability Positive periodic solution.
  • 相关文献

参考文献18

  • 1LiJ, Du Ch. Existence of positive periodic solutions for a generalized Nicholson blowflies model.J Comput Appl Math, 2008, 221: 226-233.
  • 2Berezansky L, Braverman E, Idels L. Nicholsons blowflies differential equations revisited: main results and open problems. Appl Math Model, 2010, 34: 1405-1417.
  • 3Chen Wei, Liu Bingwen. Positive almost periodic solution for a class of Nicholsons blowflies model with multiple time-varying delays.Journal of Comput Appl Math, 2011, 235: 2090--2097.
  • 4Wang Went.ao, Wang Liujuan, Chen Wei. Existence and exponential stability of Positive almost periodic solution for Nicholson-type delay systems. Nonlinear Analysis, 2011, 12: 1923-1949.
  • 5Kulenovic MRS, Ladas G, Sficas Y. Global attractivity in Nicholson's blowflies. Appl Anal, 1992, 43: 109-124.
  • 6Karakostas G, Philos Ch, Sficas Y. Stable steady state of some population model.J Dynam Differ Eq, 1992, 4: 161-190.
  • 7Chen Y. Periodic solutions of delayed periodic Nicholson's blowflies models. Can Appl Math Q, 2003, 11: 23-28.
  • 8Smith H L. Monotone Dynamical Systems, an Introduction to the Theory of Competitive and Cooperative Systems. Providence, RI: AMS, 1995.
  • 9Liz E. Four Theorems and One Conjecture on the Global Asymptotic Stability of Delay Differential Equa?tion. The First 60 Years of Nonlinear Analisys ofJean Mawhin. River Edge, NJ: Word Scientific Publishing, 2004: 117 129.
  • 10Gyori I, Trofimchuk S. Global attractivity in = -8x+pf(x(t-T)). Dynam Syst Appl, 1999,8: 197-210.

同被引文献14

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部