摘要
研究了与非光滑核的奇异积分算子和加权Lipschitz函数相关的的Toeplitz算子T_b的sharp极大函数的点态估计,并应用该估计证明了Toeplitz算子T_b是从L^p(ω)到L^q(ω^(1-q))上的有界算子.此外还建立了与非光滑核的奇异积分算子和加权BMO函数相关的的Toeplitz算子T_b的sharp极大函数的点态估计,证明了这类Toeplitz算子是从L^p(μ)到L^q(ν)上的有界算子.
This paper is concerned with point, wise estimates for the sharp maximal function of the Toeplitz operators T8 related to singular integral operators with non-smooth kernel and a weighted Lipschitz function. We show that Toeplitz operator Tb is bounded from Lp(w) to Lp(wl-q). On the other hand, we also establish pointwise estimates for the sharp maximal function of the Toeplitz operator related to singular integral operators with non-smooth kernel and a weighted BMO function and show that this Toeplitz operator Tb is bounded from LP(μ) to LP (v).
出处
《数学物理学报(A辑)》
CSCD
北大核心
2013年第6期1122-1132,共11页
Acta Mathematica Scientia
基金
国家自然科学基金(10961015,11261023)
江西省自然科学基金(20122BAB201011)
江西省教育厅基金(GJJ10397)资助