期刊文献+

与非光滑核的奇异积分相关的Toeplitz算子的双权估计 被引量:1

Two Weighted Estimates for Toeplitz Operator Related to Singular Integrals Operator with Non-smooth Kernels
下载PDF
导出
摘要 研究了与非光滑核的奇异积分算子和加权Lipschitz函数相关的的Toeplitz算子T_b的sharp极大函数的点态估计,并应用该估计证明了Toeplitz算子T_b是从L^p(ω)到L^q(ω^(1-q))上的有界算子.此外还建立了与非光滑核的奇异积分算子和加权BMO函数相关的的Toeplitz算子T_b的sharp极大函数的点态估计,证明了这类Toeplitz算子是从L^p(μ)到L^q(ν)上的有界算子. This paper is concerned with point, wise estimates for the sharp maximal function of the Toeplitz operators T8 related to singular integral operators with non-smooth kernel and a weighted Lipschitz function. We show that Toeplitz operator Tb is bounded from Lp(w) to Lp(wl-q). On the other hand, we also establish pointwise estimates for the sharp maximal function of the Toeplitz operator related to singular integral operators with non-smooth kernel and a weighted BMO function and show that this Toeplitz operator Tb is bounded from LP(μ) to LP (v).
出处 《数学物理学报(A辑)》 CSCD 北大核心 2013年第6期1122-1132,共11页 Acta Mathematica Scientia
基金 国家自然科学基金(10961015,11261023) 江西省自然科学基金(20122BAB201011) 江西省教育厅基金(GJJ10397)资助
关键词 TOEPLITZ算子 加权Lipschitz空间 加权BMO空间 双权估计 Toeplitz operator Weighted Lipschitz spaces Weighted BMO(w) space Two weighted estimate.
  • 相关文献

参考文献2

二级参考文献10

  • 1Fefferman C, Stein E M. H^p spaces of several variables. Acta Math, 1972, 129:137-193
  • 2Coifman R. A real variable characterization of H^p. Studia Math, 1974, 51: 269-274
  • 3Alvarez J, Milman M. H^p continuity properties of Calderon-Zygmund-type operators. J Math Anal Appl,1986, 118:63-79
  • 4Krantz S, Li S. Boundedness and compactness of integral operators on spaces of homogeneous type and applications. J Math Anal Appl, 2001,258:629-641
  • 5Lu S, Zhang P. Lipschitz estimates for generalized commutators of fractional integrals with rough kernel,Math Nachr, 2003, 252:71-85
  • 6Stein E M, Singular integrals and differentiability properties of functions. New Jersey: Princeton Univ Press, 1970
  • 7Chanillo S. A note on commutators. Indiana Univ Math J, 1982, 31(1): 7-16
  • 8Paluszynski M. Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss. Indiana Univ Math J, 1995, 44(1): 1-17
  • 9邓东皋,颜立新.L^p Boundedness of Commutators of Calderón-Zygmund Singular Integral Operators[J].数学进展,1998,27(3):259-269. 被引量:8
  • 10邱道文.齐型空间上的一类积分算子[J].数学年刊(A辑),2001,22(6):797-804. 被引量:8

共引文献18

同被引文献11

  • 1张璞,徐罕.Calderón-Zygmund型算子交换子的加权尖锐估计[J].数学学报(中文版),2005,48(4):625-636. 被引量:11
  • 2林燕,陆善镇.与强奇异Calderón-Zygmund算子相关的Toeplitz型算子[J].中国科学(A辑),2006,36(6):615-630. 被引量:10
  • 3HSmander L. Estimates for translation invariant operators in Lp spaces[J]. Acta Math, 1960, 104: 93-140.
  • 4Grubb D J, Moore C N. A variant of HSrmander's condition for singular integrals[J]. Colloq Math, 1997, 73(2): 165-172.
  • 5Trujillo-Gonzlez R. Weighted norm inequalities for singular integral operators satisfying a variant of HSrmander's condition[J]. Comment Math Univ Carolina, 2003, 44(1): 137- 152.
  • 6Zhang Pu, Zhang Daiqing. Commutators of singular integral operators satisfying a variant of a Lipschitz condition[J]. The Scientific World Journal, 2014, 2014, Artical ID:641705, 11 pages, doi:10.1155/2014/641705.
  • 7Krantz S, Li Song-Ying. Boundedness and compactness of integral operators on spaces of homogeneous type and applications, I[J]. J Math Anal Appl, 2001, 258: 629-641.
  • 8Grafakos L. Classical and modern Fourier analysis[M]. Pearson Education North Asia Limited, 2004.
  • 9Garcia-Cuerva J, de Francia J L Rudio. Weighted norm inequalities and related topics[M] Amsterdam: North-Holland Math, 1985.
  • 10Bloom S. A commutator theorem and weighted BMO[J]. Trans Amer Math Soc, 1985, 292 103-122.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部