摘要
对有限域上的方程 (组 )的解按分量是否为零进行分类。把计算每一类的解数归结为计算有限域上的方程 (组 )的每一分量都不为零的解数 ,再用线性同余式组的解数公式计算后者 ,得到了有限域上的方程 (组 )的解数公式。
Firstly,the solutions for the equation or the system of equations over a finite field are classified by using whether it's components are zero or not.Secondly,the calculation of the number of solutions for every type is transformed into the calculation of the number of solutions for the equation or the system of equations over a finite field that their every component is not zero.Finally,the number of solutions is calculated by using the formula of the number of solutions for the system of linear congruece and the formulas of the number of solutions for the equation or the system of equation are gotten.
出处
《宝鸡文理学院学报(自然科学版)》
CAS
2000年第3期175-179,182,共6页
Journal of Baoji University of Arts and Sciences(Natural Science Edition)
关键词
有限域
初等变换
方程组
同余式组
分量
解数
奇素数
finite field
solution of equation
index
residue class ring
matrix
elementary transformation