摘要
本文对一类具有线性和框式约束的凸规划问题给出了一个原始-对偶内点算法,该算法可在任一原始-对偶可行内点启动,并且全局收敛,当初始点靠近中心路径时,算法成为中心路径跟踪算法。数值实验表明,算法对求解大型的这类问题是有效的。
In this paper , we present a primal-dual interior point algorithm for a class of convex programming prob-lem with linear and box constrains .The algorithm can be started at any primal-dual feasible interior point and admits the global convergence .When the initial point is close to the central path , it becomes a central path-following algorithm .Numerical experiments show the proposed algorithm is effective for the large scale problems .
出处
《运筹与管理》
CSSCI
CSCD
北大核心
2013年第6期39-44,共6页
Operations Research and Management Science
基金
宁波大学学科科研资金资助项目(xkl060)
浙江省海洋与渔业资金资助项目(ZHYF201102)
浙江省教育厅科研资金资助项目(Y201119382)
关键词
凸规划
内点算法
原始-对偶
路径跟踪
convex programming
interior point algorithm
primal-dual
path-following