期刊文献+

磷酸锰锂正极材料的可控合成与电化学性能研究

Controllable Synthesis of LiMnPO_4 Cathode Materials and the Investigation of Their Electrochemical Performance
下载PDF
导出
摘要 研究了磷酸锰锂(LiMnPO4)微纳米材料的水热合成过程及其电化学特性。在水热合成过程中,改变各种参数,如反应温度、反应物LiOH浓度、铁元素掺杂等,制备一系列LiMnPO4粉体。使用X射线衍射仪(XRD)、扫描电镜(SEM)等分析手段对其进行分析表征,获得了优化的水热合成LiMnPO4工艺,制备了性能稳定的LiMnPO4正极材料。研究发现,水热合成温度是形成LiMnPO4物相的主要因素,在140℃以上温度合成时,可以得到纯相LiMnPO4;LiOH浓度对合成物相的影响不大,但是它改变了晶体的生长习性,导致粉体显微形貌从针状向颗粒状、片状转化,材料的电化学性能随之增加;纯相LiMnPO4的电化学性能无法满足应用需求,可以通过Fe元素掺杂形成固溶体,使LiMnPO4的电化学性能得到一定的提升,有望在动力电池领域得到应用。 The hydrothermal preparation and electrochemical performance of LiMnP04 cathodic materials were investigated. By varying the hydrothermal parameters, such as the reaction temperature, LiOH concentration, and the doping of Fe ions in the lattice, series of LiMnP04 powders were prepared with different morphology. Employing XRD and SEM cyclic tests, an optimal hydrothermal route was ob- tained to provide LiMnP04 materials with stable electrochemical behavior. It was found from the experi- ments that the reaction temperature was the key factor determining the final phase purity, while the LiOH concentration controlled the morphology. When the samples were hydrothermally treated above 140 ~C, pure phased LiMnP04 powders could always be obtained. With the increasing in LiOH concen- tration, the morphologies of the prepared powders change, from needle like shape to granular shape, and finally plate like shape. Such changes in shape indicated the difference in growth manner and thus led to big differences in electrochemical performance. Although the intrinsic LiMnP04 materials were not good enough for future application, further works to enhance the electrochemical properties were realized by doping Fe ions into Mn lattice site, which was expected to be used in powerful cells.
出处 《上海应用技术学院学报(自然科学版)》 2013年第4期285-290,共6页 Journal of Shanghai Institute of Technology: Natural Science
基金 国家自然科学基金资助项目(21203120) 上海市自然科学基金资助项目(11ZR1435900 10ZR1415400) 上海市科委专项基金资助项目(10JC1406900) 上海市教委科研创新资助项目(12YZ163) 上海市优秀青年基金资助项目(yyy10007 yyy10008) 上海应用技术学院引进人才基金资助项目(YJ2009-30 YJ2011-11)
关键词 磷酸锰锂 正极材料 水热合成 电化学性能 LiMnPO4 cathode materials hydrothermal synthesis electrochemical performance
  • 相关文献

参考文献15

  • 1Howard W F,Spotnitz R M. Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries[J].{H}Journal of Power Sources,2007.887-891.
  • 2Wang Chunsheng,Hong Jan. Ionic/Electronic conducting characteristics of LiFePO4 cathode materials[J].{H}Electrochemical and Solid-State Letters,2007,(03):A65-A69.
  • 3Padhi A K,Nanjundaswamy K S,Masquelier C. Mapping of transition metal redox energies in phosphates with NASICON structure by Lithium intercalation[J].{H}Journal of the Electrochemical Society,1997,(08):2581-2586.
  • 4Chung S Y,Bloking J T,Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes[J].{H}Nature Materials,2002,(02):123-128.
  • 5Pier P P,Maria C,Silvera S. Long-term cyclability of nanostructured LiFePO4[J].{H}Electrochimica Acta,2003.4205-4211.
  • 6Barker J,Saidi M Y,Swoyer J L. Lithium iron(Ⅱ) phospho-olivines prepared by a novel carbothermal reduction method[J].Electrochem Solid State Let,2003,(03):A53-A55.
  • 7Higuchi M,Katayama K,Azuma Y. Synthesis of LiFePO4 cathode material by microwave processing[J].{H}Journal of Power Sources,2003.258-261.
  • 8Franger S,Bourbon C,Rouault H. Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties[J].{H}Journal of Power Sources,2003.252-257.
  • 9王志兴,李向群,常晓燕,郭华军,彭文杰,李新海,陈启元.锂离子电池橄榄石结构正极材料LiMnPO_4的合成与性能[J].中国有色金属学报,2008,18(4):660-665. 被引量:25
  • 10常晓燕,王志兴,李新海,匡琼,彭文杰,郭华军,张云河.锂离子电池正极材料LiMnPO_4的合成与性能[J].物理化学学报,2004,20(10):1249-1252. 被引量:15

二级参考文献33

  • 1常晓燕,王志兴,李新海,匡琼,彭文杰,郭华军,张云河.锂离子电池正极材料LiMnPO_4的合成与性能[J].物理化学学报,2004,20(10):1249-1252. 被引量:15
  • 2王晓琼,李新海,王志兴,郭华军,彭文杰,刘凤举.锂离子电池正极材料LiFe_(0.9)Ni_(0.1)PO_4的合成与性能[J].中国有色金属学报,2006,16(4):739-745. 被引量:6
  • 3Padhi, A. K.; Najundaswamy, K. S.; Goodenough, J. B.J. Electrochem. Soc., 1997, 144:1188
  • 4Padhi, A. K.; Najundaswamy, K. S.; Masquelier, C.; Okada, S.;Goodenough, J. B. J. Electrochem. Soc., 1997, 144:1609
  • 5Goodenough, J. B.; Manivannan, V. Denki Kagaku oyobi Kogyo Butsuri Kagaku ( Electrochemistry and Industrial Physical Chemistry), 1998.66:1173
  • 6Nakai, I.; Nakagome, T. Electrochem. Solid-State Lett., 1998, 1:259
  • 7Amine, K.; Yasuda, H.; Yamachi, M. Electrochem. Solid-State Lett., 2000, 3:178
  • 8Yamada, A.; Yoshihiro, K.; Li, K. Y. J. Electrochem. Soc.,2001, 148(7): A747
  • 9Yamada, A.; Chung, S. C. J. Electrochem. Soc., 2001, 148:A960
  • 10Yamada, A.; Chung, S. C.; Hinokuma, K. J. Electrochem. Soc.,2001, 148:A224

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部