期刊文献+

二阶Camassa-Holm方程行波解 被引量:1

The Travelling Wave Solutions of the Second-order Camassa-Holm Equation
下载PDF
导出
摘要 对二阶Camassa-Holm方程行波解的情况进行了讨论.利用解的唯一性,得到了如下结论:二阶CH方程的行波解唯一存在,但不具有u(x,t)=kem(x-ct)形式.还为二阶CH方程行波解的研究提供了一种新途径和方法. This paper studies the travelling wave solutions of the second-order Camassa-Holm equation. Take advantage of the uniqueness of solutions, The author got the following conclusion: the travelling wave solutions only exists, but dofft have the form u(x,t) = kem(x-cl) . This paper also provides a new way and method to study the travelling wave solutions of the second order Carnassa-Holm equation.
机构地区 江苏大学数学系
出处 《大学数学》 2013年第6期30-34,共5页 College Mathematics
关键词 二阶Camassa Holm方程 行波解 解的唯一性 the second-order Camassa Holm equation the travelling wave solutions the uniqueness of solutions
  • 相关文献

参考文献6

  • 1Constantin A,Kolev B. Geodesic flow on the diffeomorphism group of the circle[J], Comment. Math. Helv,2003,78(4):787-804.
  • 2Coclite G M. Holden H, Karlsen K H. Well-posedness of higher-order Camassa-Holm equations [J]. Journal ofDifferential Equations,2009,246:929 - 963.
  • 3Ding Danping.Lv Peng. Conservative solutions for higher-order Camassa - Holm equations [J]. J. Math. Phys,2010,51(7):70-79.
  • 4Temam R. Infinite dimensional dynamical systems in mechanical and physics[M], New York: Springer-Verlag,1997.
  • 5祁新雷,李金花.(1+1)维Burgers方程新的行波解[J].纯粹数学与应用数学,2008,24(4):709-712. 被引量:8
  • 6Holden H and Risebro N H. Front tracking for Hyperbolic conservation laws[M]. New York:Springer,2002.

二级参考文献15

共引文献7

同被引文献12

  • 1沈守枫.(1+1)维广义的浅水波方程的变量分离解和孤子激发模式[J].物理学报,2006,55(3):1016-1022. 被引量:15
  • 2Whitham G B. Linear and Nonlinear Waves[M]. New York: Wiley-lnterscience, 1974.
  • 3Clarkson P A. Mansfield E L. On a shallow water wave equation[J]. Nonlinearity, 1994, 7: 975.
  • 4Hietarinta J, Conte R, Boecara N. Editors NATO ASI Seres C: Mathematical and Physical Sciences [M] Dordrecht: Kluwer, 1990,310 : 459-478.
  • 5Wang M L, Li X Z, Zhang J L. The (G'/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics [J]. Phys. Lett. A, 2008, 372: 417-423.
  • 6Wang M L, Zhang J L, Li X Z. Application of the (G/G)-expansion to travelling wave solutions of the Broer- Kaup and the approximate long water wave equations [J]. Appl Math Comput, 2008, 206: 321-326.
  • 7Li L X, Wang M L. The (G'/G)-expansion method and travelling wave solutions for a higher-order nonlinear schrodinger equation I-J]. Appl Math Comput, 2009, 208: 440-445.
  • 8Wang M L. Solitary wave solution for variant Boussineq equations [J]. Phys. Lett. A, 1995, 199: 169-172.
  • 9Wang M L. Exact solutions for a compound Kdv-Burgers equation [J]. Phys. Lett. A, 1996, 213: 279-287.
  • 10Wang M L, ect. Application of homogeneous balance method to exact solutions of nonlinear evolution equation in mathematical physics [J]. Phys. Lett. A, 1996, 216: 67-73.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部